EE263 Autumn 2005-06

Lecture 11
Eigenvectors and diagonalization

e eigenvectors

e dynamic interpretation: invariant sets

e complex eigenvectors & invariant planes
e left eigenvectors

e diagonalization

e modal form

e discrete-time stability

Eigenvectors and eigenvalues

A € Cis an eigenvalue of A € C"*" if

X(\) = det(\ — A) = 0

equivalent to:
e there exists nonzero v € C" s.t. (Al — A)v =0, i.e.,
Av = Mv
any such v is called an eigenvector of A (associated with eigenvalue \)
e there exists nonzero w € C" s.t. wT()\I —A)=0, ie.,
wl' A = w?

any such w is called a left eigenvector of A
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e if v is an eigenvector of A with eigenvalue ), then so is aw, for any
aeC a#0

e even when A is real, eigenvalue A and eigenvector v can be complex
e when A and X are real, we can always find a real eigenvector v
associated with \: if Av = \v, with A € R™*"™ X € R, and v € C",
then
ARv = ARv, ASv = A\Qw

so Rv and Jw are real eigenvectors, if they are nonzero
(and at least one is)

e conjugate symmetry: if A is real and v € C" is an eigenvector
associated with A € C, then T is an eigenvector associated with A:

taking conjugate of Av = \v we get Av = v, so
AT = \v
we’ll assume A is real from now on . ..
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Scaling interpretation

(assume A € R for now; we'll consider A € C later)

if v is an eigenvector, effect of A on v is very simple: scaling by A

Az

(what is A here?)
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e AR, A >0: vand Av point in same direction

A€ R, A< 0: vand Av point in opposite directions

A €R,

Al < 1: Av smaller than v

A€ER,

Al > 1: Aw larger than v

(we'll see later how this relates to stability of continuous- and discrete-time
systems. . . )
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Dynamic interpretation

suppose Av = v, v # 0
if © = Az and z(0) = v, then z(t) = e*v

several ways to see this, e.g.,

2!

At)?

z(t) =M = <I+tA+ (tA)” +> v

= v+ v+

= My

(since (tA)kv = (\t)kv)
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e for A € C, solution is complex (we'll interpret later); for now, assume
AER

e if initial state is an eigenvector v, resulting motion is very simple —
always on the line spanned by v

A

e solution z(t) = e*uv is called mode of system & = Ax (associated with

eigenvalue \)

e for A € R, A < 0, mode contracts or shrinks as ¢ |

e for A € R, A > 0, mode expands or grows as t |
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Invariant sets

a set S C R" is invariant under & = Ax if whenever x(t) € S, then
xz(t)e Sforall T >t

i.e.: once trajectory enters .S, it stays in .S

trajectory

vector field interpretation: trajectories only cut into S, never out
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suppose Av = Av, v#0, A €R

e line { tv | £ € R } is invariant
(in fact, ray { tv | t > 0 } is invariant)

e if A\ <0, line segment { tv | 0 <t <a }is invariant
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Complex eigenvectors

suppose Av = v, v # 0, A is complex
for a € C, (complex) trajectory ae’v satisfies & = Ax
hence so does (real) trajectory

z(t) = R(ae*v)

coswt  sinwt 1[ a ]

= e ve W :
[ re lm} —sinwt coswt -0

where
V= Ure + JVim, A=0+jw, a=a+j>

e trajectory stays in invariant plane span{v.e, Vim }
e o gives logarithmic growth /decay factor

e w gives angular velocity of rotation in plane
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Dynamic interpretation: left eigenvectors

suppose wl A = \w”, w # 0

then

%(wT:c) = wli = wl Az = MNwTx)

i.e., wlx satisfies the DE d(w”Tx)/dt = \(wTx)

hence wlz(t) = e*Mw!z(0)

e even if trajectory x is complicated, w”'z is simple
e if, e.g., A€ R, A <0, halfspace { z | w2 < a } is invariant (for a > 0)

e for A\ =0 + jw € C, (Rw)Tx and (Sw)Tz both have form

et (o cos(wt) + Bsin(wt))
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Summary

e right eigenvectors are initial conditions from which resulting motion is
simple (i.e., remains on line or in plane)

e left eigenvectors give linear functions of state that are simple, for any
initial condition

Eigenvectors and diagonalization 11-12



-1 —-10 -10
example 1: © = 1 0 0|z
0 1 0

block diagram:

I o I3
1/s 1/s 1/s

X(s) =83+ 524+ 10s+ 10 = (s + 1)(s% + 10)

eigenvalues are —1, =+ j/10
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trajectory with z(0) = (0,—1,1):
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left eigenvector asssociated with eigenvalue —1 is

let's check gTx(t) when 2(0) = (0, —1,1) (as above):

1

0.91-

0.8

0.7r

0.6
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eigenvector associated with eigenvalue j/10 is
—0.554 + 50.771
v = 0.244 + 50.175
0.055 — 50.077

so an invariant plane is spanned by

—0.554 0.771
Vo= | 0244 |, wvpm=| 0175
0.055 —0.077
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for example, with 2(0) = v, we have
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Example 2: Markov chain
probability distribution satisfies p(t + 1) = Pp(t)
pi(t) = Prob( z(t) =i )so > pi(t) =1

Pij = PI'Ob( Z(t+ 1) =1 ’ Z(t) :j ), SO Z?:l Pij =1
(such matrices are called stochastic)

rewrite as:
11---1P=[11---1]
i.e., [L 1 --- 1] is a left eigenvector of P with e.v. 1

hence det(I — P) = 0, so there is a right eigenvector v # 0 with Pv = v

it can be shown that v can be chosen so that v; > 0, hence we can
normalize v so that " v; =1

interpretation: v is an equilibrium distribution; i.e., if p(0) = v then
p(t) =v forallt >0

(if v is unique it is called the steady-state distribution of the Markov chain)
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Diagonalization

suppose v, ..., U, is a linearly independent set of eigenvectors of

A e R™™

Avi =X v, i=1,....n

express as
A1
Alv, o vy ]l=[v -~ v ]
An
define T' = [ vy o Up } and A = diag(A1,...,An), SO
AT =TA
and finally
T AT = A
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e T invertible since vy, ..., v, linearly independent
e similarity transformation by T diagonalizes A
conversely if thereisa T' = [v1 -+ v,] s.t.
T'AT = A = diag(\y,..., \n)

then AT =TA, i.e.,

AU,L':A,L'UZ‘, izl,...,n
SO v1,...,V, is a linearly independent set of eigenvectors of A
we say A is diagonalizable if
e there exists T's.t. T~ AT = A is diagonal
e A has a set of linearly independent eigenvectors
(if A is not diagonalizable, it is sometimes called defective)
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Not all matrices are diagonalizable

example: A = [ 8 (1) 1

characteristic polynomial is X (s) = s2, so A = 0 is only eigenvalue

eigenvectors satisfy Av = 0v =0, i.e.
0 1 (%) .
o o]ln]=

: v
so all eigenvectors have form v = [ 01 ] where v, # 0

thus, A cannot have two independent eigenvectors
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Distinct eigenvalues

fact: if A has distinct eigenvalues, i.e., A; # A, for i # j, then A is
diagonalizable

(the converse is false — A can have repeated eigenvalues but still be
diagonalizable)
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Diagonalization and left eigenvectors

rewrite T~YAT = A as T A= AT 1, or

T T
wy wy
A=A
T T
wn wn
where wl, ... w? are the rows of 7!

thus
w?A = )\iwiT

i.e., the rows of T~ 1 are (lin. indep.) left eigenvectors, normalized so that
T
Wi vj = 0ij

(i.e., left & right eigenvectors chosen this way are dual bases)
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Modal form

suppose A is diagonalizable by T'

define new coordinates by x = T'z, so

Ti = AT & =T 'AT7# <& 7=A7%
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in new coordinate system, system is diagonal (decoupled):

1/s

trajectories consist of n independent modes, i.e.,
fz(t) = ekit.f}i(())
hence the name modal form

Eigenvectors and diagonalization 11-25

Real modal form

when eigenvalues (hence T') are complex, system can be put in real modal
form:

s7as —diag (2, T e[| e )

—Wr41  Or41 —Wn On
where A, = diag(\1,..., ) are the real eigenvalues, and
)\Z‘:O'Z'—Fjwi, 1=r+1,...,n

are the complex eigenvalues
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block diagram of ‘complex mode’:

@

1/s

Eigenvectors and diagonalization

diagonalization simplifies many matrix expressions

e.g., resolvent:
(sT—A)' = (sTT ' =TAT Y™
— (T(sI—N)T™ )"

= T(sI—AN~'T71
. 1 1 1
= Td1ag<8_)\1,...,8_)\n>T

powers (i.e., discrete-time solution):
AF = (TATY"
= (TAT™")--- (TAT)
= TA*T™!
= Tdiag(\},..., \F)T!

(for £ < 0 only if A invertible, i.e., all \; # 0)
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exponential (i.e., continuous-time solution):

ed = T+A+A%2 ...
— [+TAT '+ (TAT D /21 + -
= TI+A+A?/20 4T
= TerT!
= Tdiag(e,...,eM) T}

for any analytic function f : R — R (i.e., given by power series) we can
define f(A) for A € R"*" (i.e., overload f) as

f(A):ﬁ0—7+51A+ﬁgA2+ﬁsA3+...

where
f(a) :50+61a+62a2+ﬂ3a3+...
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Solution via diagonalization

assume A is diagonalizable
consider LDS & = Ax, with T~1AT = A
then

z(t) = eaz(0)
= TeMT712(0)

= Z Mt (wl'z(0))v;

thus: any trajectory can be expressed as linear combination of modes
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interpretation:

e (left eigenvectors) decompose initial state z(0) into modal components

wl'z(0)

e ¢! term propagates ith mode forward ¢ seconds

e reconstruct state as linear combination of (right) eigenvectors
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application: for what 2(0) do we have z(t) — 0 as t — c0?

divide eigenvalues into those with negative real parts
RN <0,..., R\ <O,

and the others,
RAs11>0,..., RN, >0

from
n

x(t) =) N (wiz(0)v;
i=1
condition for x(t) — 0 is:

x(0) € spanf{vy,...,vs},

or equivalently,
wlz(0)=0, i=s+1,...,n

(can you prove this?)
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Stability of discrete-time systems

suppose A diagonalizable
consider discrete-time LDS z(t + 1) = Az (t)
if A=TAT™", then A* = TAFT—!
then .
x(t) = A'z(0) = Z M(wlz(0)v; =0 ast — oo
for all z(0) if and only if =

| <1, i=1,...,n.

we will see later that this is true even when A is not diagonalizable, so we
have

fact: z(t + 1) = Axz(t) is stable if and only if all eigenvalues of A have
magnitude less than one
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