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Lecture 1

Linear quadratic regulator:
Discrete-time finite horizon

e LQR cost function

e multi-objective interpretation
e LQR via least-squares

e dynamic programming solution
e steady-state LQR control

e extensions: time-varying systems, tracking problems
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LQR problem: background

discrete-time system z(t + 1) = Ax(t) + Bu(t), z(0) = xg

problem: choose u(0),u(1),... so that

e 2(0),z(1),...is ‘'small’, i.e., we get good regulation or control
e u(0),u(l),...is 'small’, i.e., using small input effort or actuator
authority

e we'll define ‘small’ soon

e these are usually competing objectives, e.g., a large u can drive x to
zero fast

linear quadratic regulator (LQR) theory addresses this question
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LQR cost function

we define quadratic cost function

JU) =Y (2(1)"Qu(r) + u(r) " Ru(r)) + =(N)"Qsx(N)

7=0

where U = (u(0),...,u(N —1)) and
Q=Q">0, Q;=Q;>0, R=R">0

are given state cost, final state cost, and input cost matrices
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N is called time horizon (we'll consider N = oo later)

first term measures state deviation

second term measures input size or actuator authority

last term measures final state deviation

@, R set relative weights of state deviation and input usage

R > 0 means any (nonzero) input adds to cost J

LQR problem: find w14, (0), ..., uq (N — 1) that minimizes J(U)
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Comparison to least-norm input

c.f. least-norm input that steers = to z(/N) = 0:

e no cost attached to z(0),...,z(N — 1)

e x(NN) must be exactly zero

we can approximate the least-norm input by taking

R=1, Q =0, Qg large, e.g., Q; = 10°1
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Multi-objective interpretation

common form for ) and R:
R=pl, Q=Q;=C"C

where C € RP™ and pe R, p >0

cost is then
N N-1
JU) = lly@I>+p Y ul)l?
=0 7=0

where y = Cx

here |/p gives relative weighting of output norm and input norm
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Input and output objectives

fix £(0) = xo and horizon N; for any input U = (u(0), ...

define
. N-1 2
e input cost Jin(U) = > |Ju(7)]]

e output cost Jout(U) = ZJTV:() ly()[1?

these are (competing) objectives; we want both small

LQR quadratic cost is Jout + pJin
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plot (Jin, Jout) for all possible U:

Jout Ul

Y

Jin

e shaded area shows (Ji,, Jout) achieved by some U

e clear area shows (Ji,, Jout) not achieved by any U
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three sample inputs U;, Us, and Us are shown

e Us is worse than Us on both counts (Ji, and Jout)

e U is better than Uy in J;,, but worse in Jgut

interpretation of LQR quadratic cost:
J = Jout + pJin = constant

corresponds to a line with slope —p on (Jin, Jout) plot
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- J = Jous + pJin = constant

Jin

e LQR optimal input is at boundary of shaded region, just touching line of
smallest possible J

e us is LQR optimal for p shown

e by varying p from 0 to +00, can sweep out optimal tradeoff curve
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LQR via least-squares

LQR can be formulated (and solved) as a (large) least-squares problem

note that X = (x(0),...x(N)) is a linear function of x(0) and
U= (u(0),...,u(N —1)):

z(1) B 0 e u(0) A
$(52) _ AB B 0 .- u(il) N A #(0)
x(N) AN-1p AN=2p ... B u(N —1) AN

can express as X = GU + Hz(0), where G € RV™*N™ [ ¢ RNmxn
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can express LQR cost as

H0) = ||aiag(@V.....@ 2% QY3 GU + Ha(0)|

2
+ Hdiag(R1/2,...,R1/2)UH

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem
with size that grows with NV
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Dynamic programming solution

e gives an efficient, recursive method to solve LQR least-squares problem

e useful and important idea on its own

for t =0,..., N define the value function V; : R — R by

N—-1

min Y (2(1)"Qx(r) + u(r)"Ru(r)) + x(N)TQx(N)

V, =
t(Z) u(t),...,u(N—1)

T=t

subject to z(t) = z, (7 + 1) = Az(1) + Bu(r)
e V;(z) gives the minimum LQR cost-to-go, starting from state z at time ¢

e Vi(xg) is min LQR cost (from state xg at time 0)
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we will find that
e V, is quadratic, i.e., Vi(2) = 2T Piz, where P, = P >0
e P, can be found recursively, working backwards from t = N

e the LQR optimal u is easily expressed in terms of P,

cost-to-go with no time left is just final state cost:
Vn(z) = 2" Q2

thus we have Py = Q¢
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Dynamic programming principle

now suppose we know Viy1(z)
what is the optimal choice for u(t)?

choice of u(t) affects

e current cost incurred (through u ()T Ru(t))

e where we land, i.e., x(t + 1) (hence, the min-cost-to-go from z(t + 1))

dynamic programming (DP) principle:

Vi(2z) = min (27 Qz + w" Rw + Vi11(Az + Bw))
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o 27Qz +wTRw is cost incurred at time t if u(t) = w;
Vit1(Az 4+ Bw) is min cost-to-go from where you land at ¢ + 1

e follows from fact that we can minimize in any order:

min f(wl,...,wk):min( min f(wl,...,'wk)>
W1y, W w1q Wy, W

g

a fct of w1

in words:
min cost-to-go from where you are = min over
(current cost incurred + min cost-to-go from where you land)
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Example: path optimization

e edges show possible flights; each has some cost

e want to find min cost route or path from SF to NY

Seattle Chicago
Denver
NY
SF
Los Angeles Atlanta
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dynamic programming (DP):
e V(i) is min cost from airport i to NY, over all possible paths

e to find min cost from city ¢ to NY: minimize sum of flight cost plus min
cost to NY from where you land, over all flights out of city ¢
(gives optimal flight out of city 7 on way to NY)

e if we can find V(i) for each i, we can find min cost path from any city
to NY

e DP principle: V(i) = min;(cj; + V(j)), where ¢;; is cost of flight from
¢ to 7, and minimum is over all possible flights out of ¢
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HJ equation for LQR

e called DP, Bellman, or Hamilton-Jacobi equation
e gives V; recursively, in terms of V;4

e any minimizing w gives optimal u(t)

DP has many applications beyond LQR, e.g.,

e optimal flow control in communication networks

e optimization in finance
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we know Vi (z) = 2T Pyz where Py = Qf

by DP,

Vn-1(z) = 2" Qz + min (w" Rw + (Az + Bw)" Py (Az + Bw))

can solve by setting derivative w.r.t. w to zero:

2wT R+ 2(Az + Bw)'PyB =0

hence optimal w is

w* = —(R+ B'PyB) 'BT Py Az
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and so
Vy_1(2) = 27Qz + w*T Rw* + (Az + Bw*)T Py(Az + Bw*)

=2 (Q+A"PyvA— A"PyB(R+ B'"PyB) 'B'PyA) 2
(after some ugly algebra)

we conclude that Viy_; is quadratic: Viy_1(z) = 27 Py_12 where

Py 1=Q+ AT"PyA - ATPyB(R+ BYPyB) 'BTPyA
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this recursion works for all ¢:

once we know V;(z) = 2T P,z is quadratic, we find that V;_; is as well,
i.e., Vi_1(2) = 2T P;_12, with

P1=Q+AT"PA—-ATPB(R+B"P,B)"'B"P,A
together with Py = Qf, we can find Py, ..., Py by recursion (backwards
in time)
called Riccati recursion for P,
and the optimizing w is

w* = —(R+BTP,B)"'BTP,Az
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Summary of LQR solution via DP

1. set Py := Qy
2. fort=N,...,1,

P :=Q+ATPA—- ATP,B(R+ BT"P,B)"'BTP,A
3. define Kt = —(R + BTPt_|_1B)_1BTPt+1A

4. optimal w is given by uq(t) = Kix(t)

comments:

e optimal w is a linear function of the state (called linear state feedback)
e recursion for min cost-to-go runs backwards in time

e solves least-squares problem with (N 4 1)m variables much faster than
direct least-squares method
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LQR example

2-state, single-input, single-output system

x(t+1):H ”x(t)+[(1)]u(t), yt)=[1 0]

with initial state z(0) = (1,0), horizon N = 20, and weight matrices

Q=Q;=0C"C.  R=pl
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optimal trade-off curve of Ji, vs. Jous:

Jout

circles show LQR solutions with p = 0.3, p = 10
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optimal input has form u(t) = K (t)x(t), where K(t) € R**?
state feedback gains vs. t for various values of ()¢ (note convergence):

Q=09

Ki(t), Ka(t) Ki(t), Ka(t) Ki(t), Ka(t)
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Steady-state regulator

usually P; rapidly converges as t decreases below N

limit or steady-state value P satisfies
Py =Q+ ATP A - ATP,B(R+ BTP,B) 'BTP,A
which is called the (DT) algebraic Riccati equation (ARE)
e P, can be found by iterating the Riccati recursion, or by direct methods

e for t not close to horizon N, LQR optimal input is approximately a
linear, constant state feedback

u(t) = Ky (t), Ky =—(R+ BTP,B) 'BTP, A

(very widely used in practice; more on this later)
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Time-varying systems

LQR is readily extended to handle time-varying systems
x(t+1) = A(t)z(t) + B(t)u(t)

and time-varying cost matrices
N-1

J= (¢(M)TQ()x(r) +u(r) " R(r)u(r)) + =(N)"Qsx(N)

7=0

(so Qy is really just Q(NV))

DP solution is readily extended, but (of course) there need not be a
steady-state solution
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Tracking problems

we consider LQR cost with state and input offsets:
N—1

J o= ) (a(r) —2(n) Qa(r) — z(7))

7=0

b Y @) - () RGu(r) - al(r)

7=0

(we drop the final state term for simplicity)

here, Z(7) and u(7) are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems
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Gauss-Newton LQR

nonlinear dynamical system: z(t + 1) = f(x(t),u(t)), (0) = xo

objective is
JU) = 3 ()" Qa(r) + u(r)"Ru(r)) + 2(N)TQsz(N)

whereQ:QTZO,Qf:Q?ZO,R:RT>O

start with a guess for U, and alternate between:

e linearize around current trajectory

e solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal U
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some more detail:

e let u denote current iterate or guess
e simulate system to find x, using z(t + 1) = f(x(t), u(t))
e linearize around this trajectory: dx(t + 1) = A(t)dx(t) + B(t)du(t)
A(t) = Do f(x(t),u(t))  B(t) = Duf(x(t),u(t))

e solve time-varying LQR tracking problem with cost

N-1

J = (x(1) + d2()) " Q(x(7) + b (7))
7=0
N-1

+ (u(r) + du(r))" R(u(r) + du(T))

T

Il
o

for next iteration, set u(t) := u(t) + du(t)
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