
EE363 Winter 2003-04

Lecture 1

Linear quadratic regulator:
Discrete-time finite horizon

• LQR cost function

• multi-objective interpretation

• LQR via least-squares

• dynamic programming solution

• steady-state LQR control

• extensions: time-varying systems, tracking problems

1–1

LQR problem: background

discrete-time system x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

problem: choose u(0), u(1), . . . so that

• x(0), x(1), . . . is ‘small’, i.e., we get good regulation or control

• u(0), u(1), . . . is ‘small’, i.e., using small input effort or actuator
authority

• we’ll define ‘small’ soon

• these are usually competing objectives, e.g., a large u can drive x to
zero fast

linear quadratic regulator (LQR) theory addresses this question

Linear quadratic regulator: Discrete-time finite horizon 1–2



LQR cost function

we define quadratic cost function

J(U) =
N−1∑

τ=0

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
+ x(N)TQfx(N)

where U = (u(0), . . . , u(N − 1)) and

Q = QT ≥ 0, Qf = QT
f ≥ 0, R = RT > 0

are given state cost, final state cost, and input cost matrices

Linear quadratic regulator: Discrete-time finite horizon 1–3

• N is called time horizon (we’ll consider N =∞ later)

• first term measures state deviation

• second term measures input size or actuator authority

• last term measures final state deviation

• Q, R set relative weights of state deviation and input usage

• R > 0 means any (nonzero) input adds to cost J

LQR problem: find ulqr(0), . . . , ulqr(N − 1) that minimizes J(U)

Linear quadratic regulator: Discrete-time finite horizon 1–4



Comparison to least-norm input

c.f. least-norm input that steers x to x(N) = 0:

• no cost attached to x(0), . . . , x(N − 1)

• x(N) must be exactly zero

we can approximate the least-norm input by taking

R = I, Q = 0, Qf large, e.g., Qf = 108I

Linear quadratic regulator: Discrete-time finite horizon 1–5

Multi-objective interpretation

common form for Q and R:

R = ρI, Q = Qf = CTC

where C ∈ Rp×n and ρ ∈ R, ρ > 0

cost is then

J(U) =
N∑

τ=0

‖y(τ)‖2 + ρ

N−1∑

τ=0

‖u(τ)‖2

where y = Cx

here
√
ρ gives relative weighting of output norm and input norm

Linear quadratic regulator: Discrete-time finite horizon 1–6



Input and output objectives

fix x(0) = x0 and horizon N ; for any input U = (u(0), . . . , u(N − 1))
define

• input cost Jin(U) =
∑N−1

τ=0 ‖u(τ)‖2

• output cost Jout(U) =
∑N

τ=0 ‖y(τ)‖2

these are (competing) objectives; we want both small

LQR quadratic cost is Jout + ρJin

Linear quadratic regulator: Discrete-time finite horizon 1–7

plot (Jin, Jout) for all possible U :

PSfrag replacements

Jin

Jout U1

U2

U3

• shaded area shows (Jin, Jout) achieved by some U

• clear area shows (Jin, Jout) not achieved by any U

Linear quadratic regulator: Discrete-time finite horizon 1–8



three sample inputs U1, U2, and U3 are shown

• U3 is worse than U2 on both counts (Jin and Jout)

• U1 is better than U2 in Jin, but worse in Jout

interpretation of LQR quadratic cost:

J = Jout + ρJin = constant

corresponds to a line with slope −ρ on (Jin, Jout) plot

Linear quadratic regulator: Discrete-time finite horizon 1–9

PSfrag replacements

Jin

Jout U1

U2

U3

J = Jout + ρJin = constant

• LQR optimal input is at boundary of shaded region, just touching line of
smallest possible J

• u2 is LQR optimal for ρ shown

• by varying ρ from 0 to +∞, can sweep out optimal tradeoff curve

Linear quadratic regulator: Discrete-time finite horizon 1–10



LQR via least-squares

LQR can be formulated (and solved) as a (large) least-squares problem

note that X = (x(0), . . . x(N)) is a linear function of x(0) and
U = (u(0), . . . , u(N − 1)):







x(1)
x(2)
...

x(N)






=







B 0 · · ·
AB B 0 · · ·
... ...

AN−1B AN−2B · · · B













u(0)
u(1)
...

u(N − 1)






+







A

A2

...
AN






x(0)

can express as X = GU +Hx(0), where G ∈ RNn×Nm, H ∈ RNn×n

Linear quadratic regulator: Discrete-time finite horizon 1–11

can express LQR cost as

J(U) =
∥
∥
∥diag(Q1/2, . . . , Q1/2, Q

1/2
f )(GU +Hx(0))

∥
∥
∥

2

+
∥
∥
∥diag(R1/2, . . . , R1/2)U

∥
∥
∥

2

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem
with size that grows with N

Linear quadratic regulator: Discrete-time finite horizon 1–12



Dynamic programming solution

• gives an efficient, recursive method to solve LQR least-squares problem

• useful and important idea on its own

for t = 0, . . . , N define the value function Vt : R
n → R by

Vt(z) = min
u(t),...,u(N−1)

N−1∑

τ=t

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
+ x(N)TQfx(N)

subject to x(t) = z, x(τ + 1) = Ax(τ) +Bu(τ)

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• V0(x0) is min LQR cost (from state x0 at time 0)

Linear quadratic regulator: Discrete-time finite horizon 1–13

we will find that

• Vt is quadratic, i.e., Vt(z) = zTPtz, where Pt = PT
t ≥ 0

• Pt can be found recursively, working backwards from t = N

• the LQR optimal u is easily expressed in terms of Pt

cost-to-go with no time left is just final state cost:

VN(z) = zTQfz

thus we have PN = Qf

Linear quadratic regulator: Discrete-time finite horizon 1–14



Dynamic programming principle

now suppose we know Vt+1(z)

what is the optimal choice for u(t)?

choice of u(t) affects

• current cost incurred (through u(t)TRu(t))

• where we land, i.e., x(t+ 1) (hence, the min-cost-to-go from x(t+ 1))

dynamic programming (DP) principle:

Vt(z) = min
w

(
zTQz + wTRw + Vt+1(Az +Bw)

)

Linear quadratic regulator: Discrete-time finite horizon 1–15

• zTQz + wTRw is cost incurred at time t if u(t) = w;
Vt+1(Az +Bw) is min cost-to-go from where you land at t+ 1

• follows from fact that we can minimize in any order:

min
w1,...,wk

f(w1, . . . , wk) = min
w1

(

min
w2,...,wk

f(w1, . . . , wk)

)

︸ ︷︷ ︸

a fct of w1

in words:
min cost-to-go from where you are = min over
(current cost incurred + min cost-to-go from where you land)

Linear quadratic regulator: Discrete-time finite horizon 1–16



Example: path optimization

• edges show possible flights; each has some cost

• want to find min cost route or path from SF to NY

PSfrag replacements

SF
NY

Seattle

Atlanta

Chicago

Denver

Los Angeles

Linear quadratic regulator: Discrete-time finite horizon 1–17

dynamic programming (DP):

• V (i) is min cost from airport i to NY, over all possible paths

• to find min cost from city i to NY: minimize sum of flight cost plus min
cost to NY from where you land, over all flights out of city i

(gives optimal flight out of city i on way to NY)

• if we can find V (i) for each i, we can find min cost path from any city
to NY

• DP principle: V (i) = minj(cji + V (j)), where cji is cost of flight from
i to j, and minimum is over all possible flights out of i

Linear quadratic regulator: Discrete-time finite horizon 1–18



HJ equation for LQR

Vt(z) = zTQz +min
w

(
wTRw + Vt+1(Az +Bw)

)

• called DP, Bellman, or Hamilton-Jacobi equation

• gives Vt recursively, in terms of Vt+1

• any minimizing w gives optimal u(t)

DP has many applications beyond LQR, e.g.,

• optimal flow control in communication networks

• optimization in finance

Linear quadratic regulator: Discrete-time finite horizon 1–19

we know VN(z) = zTPNz where PN = Qf

by DP,

VN−1(z) = zTQz +min
w

(
wTRw + (Az +Bw)TPN(Az +Bw)

)

can solve by setting derivative w.r.t. w to zero:

2wTR+ 2(Az +Bw)TPNB = 0

hence optimal w is

w∗ = −(R+BTPNB)−1BTPNAz

Linear quadratic regulator: Discrete-time finite horizon 1–20



and so

VN−1(z) = zTQz + w∗TRw∗ + (Az +Bw∗)TPN(Az +Bw∗)

= zT
(
Q+ATPNA−ATPNB(R+BTPNB)−1BTPNA

)
z

(after some ugly algebra)

we conclude that VN−1 is quadratic: VN−1(z) = zTPN−1z where

PN−1 = Q+ATPNA−ATPNB(R+BTPNB)−1BTPNA

Linear quadratic regulator: Discrete-time finite horizon 1–21

this recursion works for all t:

once we know Vt(z) = zTPtz is quadratic, we find that Vt−1 is as well,
i.e., Vt−1(z) = zTPt−1z, with

Pt−1 = Q+ATPtA−ATPtB(R+BTPtB)−1BTPtA

together with PN = Qf , we can find P0, . . . , PN by recursion (backwards
in time)

called Riccati recursion for Pt

and the optimizing w is

w∗ = −(R+BTPtB)−1BTPtAz

Linear quadratic regulator: Discrete-time finite horizon 1–22



Summary of LQR solution via DP

1. set PN := Qf

2. for t = N, . . . , 1,

Pt−1 := Q+ATPtA−ATPtB(R+BTPtB)−1BTPtA

3. define Kt := −(R+BTPt+1B)−1BTPt+1A

4. optimal u is given by ulqr(t) = Ktx(t)

comments:

• optimal u is a linear function of the state (called linear state feedback)
• recursion for min cost-to-go runs backwards in time
• solves least-squares problem with (N + 1)m variables much faster than
direct least-squares method

Linear quadratic regulator: Discrete-time finite horizon 1–23

LQR example

2-state, single-input, single-output system

x(t+ 1) =

[
1 1
0 1

]

x(t) +

[
0
1

]

u(t), y(t) =
[
1 0

]
x(t)

with initial state x(0) = (1, 0), horizon N = 20, and weight matrices

Q = Qf = CTC, R = ρI

Linear quadratic regulator: Discrete-time finite horizon 1–24



optimal trade-off curve of Jin vs. Jout:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

PSfrag replacements

Jin

J
o
u
t

circles show LQR solutions with ρ = 0.3, ρ = 10

Linear quadratic regulator: Discrete-time finite horizon 1–25

u & y for ρ = 0.3, ρ = 10:

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

PSfrag replacements

t

u
(t
)

y
(t
)

Linear quadratic regulator: Discrete-time finite horizon 1–26



optimal input has form u(t) = K(t)x(t), where K(t) ∈ R1×2

state feedback gains vs. t for various values of Qf (note convergence):

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1PSfrag replacements

t

K
1
(t

),
K

2
(t

)
K

1
(t

),
K

2
(t

)
K

1
(t

),
K

2
(t

) Qf = Q

Qf = 0

Qf = 103I

Linear quadratic regulator: Discrete-time finite horizon 1–27

Steady-state regulator

usually Pt rapidly converges as t decreases below N

limit or steady-state value Pss satisfies

Pss = Q+ATPssA−ATPssB(R+BTPssB)−1BTPssA

which is called the (DT) algebraic Riccati equation (ARE)

• Pss can be found by iterating the Riccati recursion, or by direct methods

• for t not close to horizon N , LQR optimal input is approximately a
linear, constant state feedback

u(t) = Kssx(t), Kss = −(R+BTPssB)−1BTPssA

(very widely used in practice; more on this later)

Linear quadratic regulator: Discrete-time finite horizon 1–28



Time-varying systems

LQR is readily extended to handle time-varying systems

x(t+ 1) = A(t)x(t) +B(t)u(t)

and time-varying cost matrices

J =
N−1∑

τ=0

(
x(τ)TQ(τ)x(τ) + u(τ)TR(τ)u(τ)

)
+ x(N)TQfx(N)

(so Qf is really just Q(N))

DP solution is readily extended, but (of course) there need not be a
steady-state solution

Linear quadratic regulator: Discrete-time finite horizon 1–29

Tracking problems

we consider LQR cost with state and input offsets:

J =
N−1∑

τ=0

(x(τ)− x̄(τ))TQ(x(τ)− x̄(τ))

+

N−1∑

τ=0

(u(τ)− ū(τ))TR(u(τ)− ū(τ))

(we drop the final state term for simplicity)

here, x̄(τ) and ū(τ) are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems

Linear quadratic regulator: Discrete-time finite horizon 1–30



Gauss-Newton LQR

nonlinear dynamical system: x(t+ 1) = f(x(t), u(t)), x(0) = x0

objective is

J(U) =

N−1∑

τ=0

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
+ x(N)TQfx(N)

where Q = QT ≥ 0, Qf = QT
f ≥ 0, R = RT > 0

start with a guess for U , and alternate between:

• linearize around current trajectory
• solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal U

Linear quadratic regulator: Discrete-time finite horizon 1–31

some more detail:

• let u denote current iterate or guess
• simulate system to find x, using x(t+ 1) = f(x(t), u(t))

• linearize around this trajectory: δx(t+ 1) = A(t)δx(t) +B(t)δu(t)

A(t) = Dxf(x(t), u(t)) B(t) = Duf(x(t), u(t))

• solve time-varying LQR tracking problem with cost

J =

N−1∑

τ=0

(x(τ) + δx(τ))TQ(x(τ) + δx(τ))

+

N−1∑

τ=0

(u(τ) + δu(τ))TR(u(τ) + δu(τ))

• for next iteration, set u(t) := u(t) + δu(t)

Linear quadratic regulator: Discrete-time finite horizon 1–32


