EE363 Winter 2003-04

Lecture 1

Linear quadratic regulator: Discrete-time finite horizon

- LQR cost function
- multi-objective interpretation
- LQR via least-squares
- dynamic programming solution
- steady-state LQR control
- extensions: time-varying systems, tracking problems

1-1

LQR problem: background

discrete-time system x(t+1) = Ax(t) + Bu(t), $x(0) = x_0$ problem: choose $u(0), u(1), \ldots$ so that

- $x(0), x(1), \ldots$ is 'small', *i.e.*, we get good *regulation* or *control*
- $u(0), u(1), \ldots$ is 'small', *i.e.*, using small input effort or actuator authority
- we'll define 'small' soon
- ullet these are usually competing objectives, e.g., a large u can drive x to zero fast

linear quadratic regulator (LQR) theory addresses this question

LQR cost function

we define quadratic cost function

$$J(U) = \sum_{\tau=0}^{N-1} (x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau)) + x(N)^T Q_f x(N)$$

where $U = (u(0), \dots, u(N-1))$ and

$$Q = Q^T \ge 0, \qquad Q_f = Q_f^T \ge 0, \qquad R = R^T > 0$$

are given state cost, final state cost, and input cost matrices

Linear quadratic regulator:

Discrete-time finite horizon

1–3

- N is called *time horizon* (we'll consider $N=\infty$ later)
- first term measures state deviation
- second term measures input size or actuator authority
- last term measures final state deviation
- ullet Q, R set relative weights of state deviation and input usage
- ullet R>0 means any (nonzero) input adds to cost J

LQR problem: find $u_{lqr}(0), \ldots, u_{lqr}(N-1)$ that minimizes J(U)

Comparison to least-norm input

c.f. least-norm input that steers x to x(N) = 0:

- no cost attached to $x(0), \ldots, x(N-1)$
- \bullet x(N) must be exactly zero

we can approximate the least-norm input by taking

$$R = I,$$
 $Q = 0,$ Q_f large, e.g., $Q_f = 10^8 I$

Linear quadratic regulator:

Discrete-time finite horizon

1-5

Multi-objective interpretation

common form for Q and R:

$$R = \rho I, \qquad Q = Q_f = C^T C$$

where $C \in \mathbf{R}^{p \times n}$ and $\rho \in \mathbf{R}$, $\rho > 0$

cost is then

$$J(U) = \sum_{\tau=0}^{N} ||y(\tau)||^2 + \rho \sum_{\tau=0}^{N-1} ||u(\tau)||^2$$

where y = Cx

here $\sqrt{\rho}$ gives relative weighting of output norm and input norm

Input and output objectives

fix $x(0) = x_0$ and horizon N; for any input $U = (u(0), \dots, u(N-1))$ define

- \bullet input cost $J_{\mathrm{in}}(U) = \sum_{\tau=0}^{N-1} \|u(\tau)\|^2$
- \bullet output cost $J_{\mathrm{out}}(U) = \sum_{\tau=0}^N \|y(\tau)\|^2$

these are (competing) objectives; we want both small

LQR quadratic cost is $J_{\mathrm{out}} + \rho J_{\mathrm{in}}$

Linear quadratic regulator:

Discrete-time finite horizon

1-7

plot $(J_{\rm in},J_{\rm out})$ for all possible U:

- ullet shaded area shows $(J_{\mathrm{in}},J_{\mathrm{out}})$ achieved by some U
- ullet clear area shows $(J_{\mathrm{in}},J_{\mathrm{out}})$ not achieved by any U

three sample inputs U_1 , U_2 , and U_3 are shown

- ullet U_3 is worse than U_2 on both counts $(J_{
 m in}$ and $J_{
 m out})$
- ullet U_1 is better than U_2 in J_{in} , but worse in J_{out}

interpretation of LQR quadratic cost:

$$J = J_{\mathrm{out}} + \rho J_{\mathrm{in}} = \mathrm{constant}$$

corresponds to a line with slope $-\rho$ on $(J_{\mathrm{in}},J_{\mathrm{out}})$ plot

Linear quadratic regulator:

Discrete-time finite horizon

1-9

1-10

- \bullet LQR optimal input is at boundary of shaded region, just touching line of smallest possible J
- ullet u_2 is LQR optimal for ho shown
- ullet by varying ho from 0 to $+\infty$, can sweep out optimal tradeoff curve

LQR via least-squares

LQR can be formulated (and solved) as a (large) least-squares problem

note that $X=(x(0),\ldots x(N))$ is a linear function of x(0) and $U=(u(0),\ldots ,u(N-1))$:

$$\begin{bmatrix} x(1) \\ x(2) \\ \vdots \\ x(N) \end{bmatrix} = \begin{bmatrix} B & 0 & \cdots \\ AB & B & 0 & \cdots \\ \vdots & \vdots & \vdots \\ A^{N-1}B & A^{N-2}B & \cdots & B \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N-1) \end{bmatrix} + \begin{bmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix} x(0)$$

can express as X = GU + Hx(0), where $G \in \mathbf{R}^{Nn \times Nm}$, $H \in \mathbf{R}^{Nn \times n}$

Linear quadratic regulator:

Discrete-time finite horizon

1-11

can express LQR cost as

$$\begin{split} J(U) &= & \left\| \mathbf{diag}(Q^{1/2}, \dots, Q^{1/2}, Q_f^{1/2}) (GU + Hx(0)) \right\|^2 \\ &+ & \left\| \mathbf{diag}(R^{1/2}, \dots, R^{1/2}) U \right\|^2 \end{split}$$

this is just a (big) least-squares problem

this solution method requires forming and solving a least-squares problem with size that $\ensuremath{\textit{grows}}$ with N

Dynamic programming solution

- gives an efficient, recursive method to solve LQR least-squares problem
- useful and important idea on its own

for $t=0,\ldots,N$ define the value function $V_t:\mathbf{R}^n\to\mathbf{R}$ by

$$V_t(z) = \min_{u(t),\dots,u(N-1)} \sum_{\tau=t}^{N-1} \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) + x(N)^T Q_f x(N)$$

subject to x(t)=z, $x(\tau+1)=Ax(\tau)+Bu(\tau)$

- $\bullet \ V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $V_0(x_0)$ is min LQR cost (from state x_0 at time 0)

Linear quadratic regulator:

Discrete-time finite horizon

1-13

we will find that

- V_t is quadratic, i.e., $V_t(z) = z^T P_t z$, where $P_t = P_t^T \ge 0$
- ullet P_t can be found recursively, working backwards from t=N
- ullet the LQR optimal u is easily expressed in terms of P_t

cost-to-go with no time left is just final state cost:

$$V_N(z) = z^T Q_f z$$

thus we have $P_N = Q_f$

Dynamic programming principle

now suppose we know $V_{t+1}(z)$ what is the optimal choice for u(t)? choice of u(t) affects

- current cost incurred (through $u(t)^T R u(t)$)
- ullet where we land, i.e., x(t+1) (hence, the min-cost-to-go from x(t+1))

dynamic programming (DP) principle:

$$V_t(z) = \min_{w} \left(z^T Q z + w^T R w + V_{t+1} (A z + B w) \right)$$

Linear quadratic regulator:

Discrete-time finite horizon

1-15

- $z^TQz + w^TRw$ is cost incurred at time t if u(t) = w; $V_{t+1}(Az + Bw)$ is min cost-to-go from where you land at t+1
- follows from fact that we can minimize in any order:

$$\min_{w_1,\dots,w_k} f(w_1,\dots,w_k) = \min_{w_1} \underbrace{\left(\min_{w_2,\dots,w_k} f(w_1,\dots,w_k)\right)}_{\text{a fct of } w_1}$$

in words:

min cost-to-go from where you are = min over (current cost incurred + min cost-to-go from where you land)

Example: path optimization

- edges show possible flights; each has some cost
- want to find min cost route or path from SF to NY

Linear quadratic regulator:

Discrete-time finite horizon

1-17

dynamic programming (DP):

- ullet V(i) is min cost from airport i to NY, over all possible paths
- to find min cost from city i to NY: minimize sum of flight cost plus min cost to NY from where you land, over all flights out of city i (gives optimal flight out of city i on way to NY)
- ullet if we can find V(i) for each i, we can find min cost path from any city to NY
- DP principle: $V(i) = \min_j (c_{ji} + V(j))$, where c_{ji} is cost of flight from i to j, and minimum is over all possible flights out of i

HJ equation for LQR

$$V_t(z) = z^T Q z + \min_{w} \left(w^T R w + V_{t+1} (Az + Bw) \right)$$

- called DP, Bellman, or Hamilton-Jacobi equation
- ullet gives V_t recursively, in terms of V_{t+1}
- ullet any minimizing w gives optimal u(t)

DP has many applications beyond LQR, e.g.,

- optimal flow control in communication networks
- optimization in finance

Linear quadratic regulator:

Discrete-time finite horizon

1-19

we know $V_N(z) = z^T P_N z$ where $P_N = Q_f$

by DP,

$$V_{N-1}(z) = z^{T}Qz + \min_{w} (w^{T}Rw + (Az + Bw)^{T}P_{N}(Az + Bw))$$

can solve by setting derivative w.r.t. \boldsymbol{w} to zero:

$$2w^T R + 2(Az + Bw)^T P_N B = 0$$

hence optimal \boldsymbol{w} is

$$w^* = -(R + B^T P_N B)^{-1} B^T P_N A z$$

Linear quadratic regulator:

and so

$$V_{N-1}(z) = z^{T}Qz + w^{*T}Rw^{*} + (Az + Bw^{*})^{T}P_{N}(Az + Bw^{*})$$

$$=z^T\left(Q+A^TP_NA-A^TP_NB(R+B^TP_NB)^{-1}B^TP_NA\right)z$$
 (after some ugly algebra)

we conclude that V_{N-1} is quadratic: $V_{N-1}(z) = z^T P_{N-1} z$ where

$$P_{N-1} = Q + A^T P_N A - A^T P_N B (R + B^T P_N B)^{-1} B^T P_N A$$

Linear quadratic regulator:

Discrete-time finite horizon

1-21

this recursion works for all t:

once we know $V_t(z)=z^TP_tz$ is quadratic, we find that V_{t-1} is as well, i.e., $V_{t-1}(z)=z^TP_{t-1}z$, with

$$P_{t-1} = Q + A^T P_t A - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A$$

together with $P_N=Q_f$, we can find P_0,\ldots,P_N by recursion (backwards in time)

called **Riccati recursion** for P_t

and the optimizing \boldsymbol{w} is

$$w^* = -(R + B^T P_t B)^{-1} B^T P_t A z$$

Summary of LQR solution via DP

- 1. set $P_N := Q_f$
- 2. for t = N, ..., 1,

$$P_{t-1} := Q + A^T P_t A - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A$$

- 3. define $K_t := -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A$
- 4. optimal u is given by $u_{\mathrm{lqr}}(t) = K_t x(t)$

comments:

- optimal u is a linear function of the state (called *linear state feedback*)
- recursion for min cost-to-go runs backwards in time
- ullet solves least-squares problem with (N+1)m variables much faster than direct least-squares method

Linear quadratic regulator:

Discrete-time finite horizon

1-23

LQR example

2-state, single-input, single-output system

$$x(t+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \qquad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

with initial state x(0) = (1,0), horizon N = 20, and weight matrices

$$Q = Q_f = C^T C, \qquad R = \rho I$$

Linear quadratic regulator:

Discrete-time finite horizon

optimal trade-off curve of J_{in} vs. J_{out} :

circles show LQR solutions with $\rho=0.3$, $\rho=10$

Linear quadratic regulator:

Discrete-time finite horizon

1-25

 $u\ \&\ y\ {\rm for}\ \rho=0.3$, $\rho=10$:

optimal input has form u(t)=K(t)x(t), where $K(t)\in \mathbf{R}^{1\times 2}$ state feedback gains vs. t for various values of Q_f (note convergence):

Linear quadratic regulator:

Discrete-time finite horizon

1-27

Steady-state regulator

usually P_t rapidly converges as t decreases below N limit or steady-state value P_{ss} satisfies

$$P_{\rm ss} = Q + A^T P_{\rm ss} A - A^T P_{\rm ss} B (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

which is called the (DT) algebraic Riccati equation (ARE)

- ullet $P_{
 m ss}$ can be found by iterating the Riccati recursion, or by direct methods
- ullet for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

$$u(t) = K_{ss}x(t), K_{ss} = -(R + B^T P_{ss}B)^{-1}B^T P_{ss}A$$

(very widely used in practice; more on this later)

Linear quadratic regulator:

Discrete-time finite horizon

Time-varying systems

LQR is readily extended to handle time-varying systems

$$x(t+1) = A(t)x(t) + B(t)u(t)$$

and time-varying cost matrices

$$J = \sum_{\tau=0}^{N-1} (x(\tau)^T Q(\tau) x(\tau) + u(\tau)^T R(\tau) u(\tau)) + x(N)^T Q_f x(N)$$

(so Q_f is really just Q(N))

DP solution is readily extended, but (of course) there need not be a steady-state solution

Linear quadratic regulator:

Discrete-time finite horizon

1-29

Tracking problems

we consider LQR cost with state and input offsets:

$$J = \sum_{\tau=0}^{N-1} (x(\tau) - \bar{x}(\tau))^T Q(x(\tau) - \bar{x}(\tau))$$

$$+ \sum_{\tau=0}^{N-1} (u(\tau) - \bar{u}(\tau))^T R(u(\tau) - \bar{u}(\tau))$$

(we drop the final state term for simplicity)

here, $\bar{x}(\tau)$ and $\bar{u}(\tau)$ are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems

Gauss-Newton LQR

nonlinear dynamical system: $x(t+1) = f(x(t), u(t)), \ x(0) = x_0$ objective is

$$J(U) = \sum_{\tau=0}^{N-1} (x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau)) + x(N)^T Q_f x(N)$$

where
$$Q=Q^T\geq 0$$
, $Q_f=Q_f^T\geq 0$, $R=R^T>0$

start with a guess for U, and alternate between:

- linearize around current trajectory
- solve associated LQR (tracking) problem

sometimes converges, sometimes to the globally optimal \boldsymbol{U}

Linear quadratic regulator:

Discrete-time finite horizon

1-31

some more detail:

- let u denote current iterate or guess
- simulate system to find x, using x(t+1) = f(x(t), u(t))
- linearize around this trajectory: $\delta x(t+1) = A(t)\delta x(t) + B(t)\delta u(t)$

$$A(t) = D_x f(x(t), u(t)) \qquad B(t) = D_u f(x(t), u(t))$$

• solve time-varying LQR tracking problem with cost

$$J = \sum_{\tau=0}^{N-1} (x(\tau) + \delta x(\tau))^{T} Q(x(\tau) + \delta x(\tau))$$

$$+ \sum_{\tau=0}^{N-1} (u(\tau) + \delta u(\tau))^{T} R(u(\tau) + \delta u(\tau))$$

• for next iteration, set $u(t) := u(t) + \delta u(t)$

Linear quadratic regulator: