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Lecture 9
Autonomous linear dynamical systems

e autonomous linear dynamical systems

e examples

higher order systems

linearization near equilibrium point

linearization along trajectory
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Autonomous linear dynamical systems

continuous-time autonomous LDS has form
T = Ax
e x(t) € R" is called the state

e 1 is the state dimension or (informally) the number of states

e A is the dynamics matrix
(system is time-invariant if A doesn't depend on t)
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picture (phase plane):
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example 2: © =
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systems

Block diagram

block diagram representation of © = Ax:

n n

%)%

e 1/s block represents n parallel scalar integrators

e coupling comes from dynamics matrix A

Autonomous linear dynamical

systems
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useful when A has structure, e.g., block upper triangular:
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here x; doesn't affect x5 at all
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Linear circuit
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circuit equations are

Cl’UC . di ‘c
O =i Lg=u [Z}:F[

C = diag(Cy,...,C)), L = diag(Lq,...
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. v
with state x = [ z.c ] we have
l
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Chemical reactions

e reaction involving n chemicals; z; is concentration of chemical ¢

e linear model of reaction kinetics

dl’i
dt

= Gj1T1 + -+ ATy

e good model for some reactions; A is usually sparse
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Example: series reaction A — B —% C with linear dynamics
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plot for k1 = ko = 1, initial z(0) = (1,0,0)
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Autonomous linear dynamical systems

Finite-state discrete-time Markov chain

z(t) € {1,...,n} is a random sequence with
Prob( z(t+1)=1i|2(t)=j )= P
where P € R™™" is the matrix of transition probabilities
can represent probability distribution of z(t) as n-vector
Prob(z(t) =1)
p(t) = :

Prob(z(t) = n)

(so, e.g., Prob(z(t) = 1,2, or3) =[1110---0]p(t))

then we have p(t + 1) = Pp(t)
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P is often sparse; Markov chain is depicted graphically

e nodes are states

e edges show transition probabilities
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example:

1.0 0.1

0.7

0.1
0.2

e state 1 is ‘system OK’
e state 2 is ‘system down’

e state 3 is ‘system being repaired’

0.9 07 1.0
pt+1)=1{ 01 01 0 |p(t)
0 02 O
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Numerical integration of continuous system

compute approximate solution of & = Az, x(0) = zq

suppose h is small time step (x doesn’'t change much in h seconds)

simple (‘forward Euler’) approximation:

z(t+h) = x(t) + hi(t) = (I + hA)x(t)

by carrying out this recursion (discrete-time LDS), starting at x(0) = xo,

we get approximation

z(kh) = (I + hA)*z(0)

(forward Euler is never used in practice)
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Higher order linear dynamical systems

where (™) denotes mth derivative

T
. . .Z'(l) k
define new variable z = : € R"", so

x(k_l)
[ 0 I 0
M 0 0 I
z = : = :
zk) 0 0 0
| A A1 A

a (first order) LDS (with bigger state)
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block diagram:

() 1/s

1/s
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1/s

Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

M{+Dg+ Kq=0

M is the mass matrix

K is the stiffness matrix

D is the damping matrix

with state xz = [ Z ] we have

Autonomous linear dynamical systems

q(t) € R” is the vector of generalized displacements

~M~'D



Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

&= f(x)

where f : R" — R"

suppose x. is an equilibrium point, i.e., f(x.) =0

(so x(t) = z. satisfies DE)

now suppose x(t) is near x, so

£(t) = f2(t) = fze) + Df(we)(x(t) — 2)
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with 0x(t) = z(t) — x., rewrite as

ox(t) = Df(xe)dx(t)

replacing ~ with = yields linearized approximation of DE near x.

we hope solution of 0z = D f(x.)dx is a good approximation of = — x,

(more later)
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example: pendulum

m |
. mg
\l

2nd order nonlinear DE mi26 = —Imgsin 6

rewrite as first order DE with state x = l Z } :

o= i |
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equilibrium point (pendulum down): x =0

linearized system near x. = 0:

. 0 1
533_[—9/[ 0151’
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Does linearization ‘work’?

the linearized system usually, but not always, gives a good idea of the
system behavior near z.

3

example 1: © = —x° near . =0

for 2(0) > 0 solutions have form z(t) = (z(0)~% + 2t)_1/2

linearized system is dx = 0; solutions are constant

example 2: 7 = 23

near z, = 0
for z(0) > 0 solutions have form z(t) = (2(0)~2 — 2t)_1/2
(finite escape time at t = 2(0)72/2)

linearized system is dz = 0; solutions are constant
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: dx(t) = 0z(t)
0.05F ] :L'(t)

e systems with very different behavior have same linearized system

e linearized systems do not predict qualitative behavior of either system
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Linearization along trajectory

® suppose Ty @ Ry — R" satisfies @aj(t) = f(@traj(t),t)

e suppose x(t) is another trajectory, i.e., ©(t) = f(x(t),t), and is near
xtraj(t)

e then

%(m - xtraj) = f(xa t) - f(xtraja t) ~ Dmf(xtraja t)(x - xtraj)

e (time-varying) LDS

dr = D, f(%4raj, t)x

is called linearized or variational system along trajectory Ti;aj
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example: linearized oscillator

SUppOSe Ziraj(t) is T-periodic solution of nonlinear DE:

Tiraj(t) = f(@traj(t);,  Tiraj(t +T) = Toraj(t)

linearized system is

ox = A(t)ox
where A(t) = Df(xtraj(t))

A(t) is T-periodic, so linearized system is called T-periodic linear system.

used to study:

e startup dynamics of clock and oscillator circuits

o effects of power supply and other disturbances on clock behavior
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