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Abstract

This paper presents a reinforcement learning framework for continuous-

time dynamical systems without a priori discretization of time, state, and

action. Based on the Hamilton-Jacobi-Bellman (HJB) equation for in�nite-

horizon, discounted reward problems, we derive algorithms for estimating

value functions and for improving policies with the use of function approx-

imators. The process of value function estimation is formulated as the

minimization of a continuous-time form of the temporal di�erence (TD)

error. Update methods based on backward Euler approximation and ex-

ponential eligibility traces are derived and their correspondences with the

conventional residual gradient, TD(0), and TD(�) algorithms are shown.

For policy improvement, two methods, namely, a continuous actor-critic

method and a value-gradient based greedy policy, are formulated. As a

special case of the latter, a nonlinear feedback control law using the value

gradient and the model of the input gain is derived. The \advantage up-

dating", a model-free algorithm derived previously, is also formulated in

the HJB based framework.

The performance of the proposed algorithms is �rst tested in a non-

linear control task of swinging up a pendulum with limited torque. It is

shown in the simulations that 1) the task is accomplished by the continuous

actor-critic method in a number of trials several times fewer than by the

conventional discrete actor-critic method; 2) among the continuous policy

update methods, the value-gradient based policy with a known or learned

dynamic model performs several times better than the actor-critic method;
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and 3) a value function update using exponential eligibility traces is more ef-

�cient and stable than that based on Euler approximation. The algorithms

are then tested in a higher-dimensional task, i.e., cart-pole swing-up. This

task is accomplished in several hundred trials using the value-gradient based

policy with a learned dynamic model.

1 Introduction

The temporal di�erence (TD) family of reinforcement learning (RL) algorithms (Barto et al.,

1983; Sutton, 1988; Sutton and Barto, 1998) provides an e�ective approach to control and

decision problems for which optimal solutions are analytically unavailable or diÆcult to

obtain. A number of successful applications to large-scale problems, such as board games

(Tesauro, 1994), dispatch problems (Crites and Barto, 1996; Zhang and Dietterich, 1996;

Singh and Bertsekas, 1997), and robot navigation (Mataric, 1994) have been reported (see,

e.g., Kaelbling et al. (1996) and Sutton and Barto (1998) for a review). The progress of

RL research so far, however, has been mostly constrained to the discrete formulation of the

problem in which discrete actions are taken in discrete time steps based on the observation

of the discrete state of the system.

Many interesting real-world control tasks, such as driving a car or riding a snowboard,

require smooth continuous actions taken in response to high-dimensional, real-valued sensory

input. In applications of RL to continuous problems, the most common approach has been

�rst to discretize time, state, and action and then to apply an RL algorithm for a discrete

stochastic system. However, this discretization approach has the following drawbacks:

1. When a coarse discretization is used, the control output is not smooth, resulting in a

poor performance.

2. When a �ne discretization is used, the number of states and the number of iteration

steps become huge, which necessitates not only large memory storage but also many

learning trials.

3. In order to keep the number of states manageable, an elaborate partitioning of the

variables has to be found using prior knowledge.

E�orts have been made to eliminate some of these diÆculties by using appropriate function

approximators (Gordon, 1996; Sutton, 1996; Tsitsiklis and Van Roy, 1997), adaptive state

partitioning and aggregation methods (Moore, 1994; Singh et al., 1995; Asada et al., 1996;

Pareigis, 1998), and multiple time scale methods (Sutton, 1995).
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In this paper, we consider an alternative approach in which learning algorithms are formu-

lated for continuous-time dynamical systems without resorting to the explicit discretization

of time, state and action. The continuous framework has the following possible advantages:

1. A smooth control performance can be achieved.

2. An eÆcient control policy can be derived using the gradient of the value function

(Werbos, 1990).

3. There is no need to guess how to partition the state, action, and time: it is the task

of the function approximation and numerical integration algorithms to �nd the right

granularity.

There have been several attempts at extending RL algorithms to continuous cases.

Bradtke (1993) showed convergence results for Q-learning algorithms for discrete-time, continuous-

state systems with linear dynamics and quadratic costs. Bradtke and Du� (1995) derived a

TD algorithm for continuous-time, discrete-state systems (semi-Markov decision problems).

Baird (1993) proposed the \advantage updating" method by extending Q-learning to be used

for continuous-time, continuous-state problems.

When we consider optimization problems in continuous-time systems, the Hamilton-

Jacobi-Bellman (HJB) equation, which is a continuous-time counterpart of the Bellman

equation for discrete-time systems, provides a sound theoretical basis (see, e.g., Bertsekas

(1995) and Fleming and Soner (1993)). Methods for learning the optimal value function

that satis�es the HJB equation have been studied using a grid-based discretization of space

and time (Peterson, 1993) and convergence proofs have been shown for grid sizes taken to

zero (Munos, 1997; Munos and Bourgine, 1998). However, the direct implementation of

such methods is impractical in a high-dimensional state space. An HJB based method that

uses function approximators was presented by Dayan and Singh (1996) . They proposed the

learning of the gradients of the value function without learning the value function itself, but

the method is applicable only to non-discounted reward problems.

This paper presents a set of RL algorithms for nonlinear dynamical systems based on

the Hamilton-Jacobi-Bellman equation for in�nite-horizon, discounted reward problems. A

series of simulations are devised to evaluate their e�ectiveness when used with continuous

function approximators.

We �rst consider methods for learning the value function on the basis of minimizing a

continuous-time form of the TD error. The update algorithms are derived either by using a

single step or exponentially weighed eligibility traces. The relationships of these algorithms

with the residual gradient (Baird, 1995), TD(0), and TD(�) algorithms (Sutton, 1988) for

discrete cases are also shown. Next, we formulate methods for improving the policy using
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the value function, namely, the continuous actor-critic method and a value-gradient based

policy. Speci�cally, when a model is available for the input gain of the system dynamics,

we derive a closed-form feedback policy that is suitable for real-time implementation. Its

relationship with \advantage updating" (Baird, 1993) is also discussed.

The performance of the proposed methods is �rst evaluated in nonlinear control tasks of

swinging up a pendulum with limited torque (Atkeson, 1994; Doya, 1996) using normalized

Gaussian basis function networks for representing the value function, the policy, and the

model. We test: 1) the performance of the discrete actor-critic, continuous actor-critic, and

value-gradient based methods; 2) the performance of the value function update methods;

and 3) the e�ects of the learning parameters, including the action cost, exploration noise,

and landscape of the reward function. Then, we test the algorithms in a more challenging

task, i.e., cart-pole swing-up (Doya, 1997), in which the state space is higher-dimensional

and the system input gain is state-dependent.

2 The Optimal Value Function for a Discounted Re-

ward Task

In this paper, we consider the continuous-time deterministic system

_x(t) = f(x(t);u(t)) (1)

where x 2 X � Rn is the state and u 2 U � Rm is the action (control input). We denote

the immediate reward for the state and the action as

r(t) = r(x(t);u(t)): (2)

Our goal is to �nd a policy (control law)

u(t) = �(x(t)) (3)

that maximizes the cumulative future rewards

V �(x(t)) =
Z 1

t
e�

s�t
� r(x(s);u(s))ds (4)

for any initial state x(t). Note that x(s) and u(s) (t � s <1) follow the system dynamics (1)

and the policy (3). V �(x) is called the value function of the state x and � is the time constant

for discounting future rewards. An important feature of this in�nite-horizon formulation is

that the value function and the optimal policy do not depend explicitly on time, which is

convenient in estimating them using function approximators. The discounted reward makes

it unnecessary to assume that the state is attracted to a zero-reward state.
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The value function V � for the optimal policy �� is de�ned as

V �(x(t)) = max
u[t;1)

�Z 1

t
e�

s�t
� r(x(s);u(s))ds

�
; (5)

where u[t;1) denotes the time course u(s) 2 U for t � s <1. According to the principle

of optimality, the condition for the optimal value function at time t is given by

1

�
V �(x(t)) = max

u(t)2U

"
r(x(t);u(t)) +

@V �(x)

@x
f(x(t);u(t))

#
; (6)

which is a discounted version of the Hamilton-Jacobi-Bellman equation (see Appendix A).

The optimal policy is given by the action that maximizes the right-hand side of the HJB

equation

u(t) = ��(x(t)) = argmax
u2U

"
r(x(t);u) +

@V �(x)

@x
f(x(t);u)

#
: (7)

Reinforcement learning can be formulated as the process of bringing the current policy

� and its value function estimate V closer to the optimal policy �� and the optimal value

function V �. It generally involves two components:

1. Estimate the value function V based on the current policy �.

2. Improve the policy � by making it greedy with respect to the current estimate of the

value function V .

We will consider the algorithms for these two processes in the following two sections.

3 Learning the Value Function

For the learning of the value function in a continuous state space, it is mandatory to use

some form of function approximator. We denote the current estimate of the value function

as

V �(x(t)) ' V (x(t);w); (8)

where w is a parameter of the function approximator, or simply, V (t). In the framework of

TD learning, the estimate of the value function is updated using a self-consistency condition

that is local in time and space. This is given by di�erentiating de�nition (4) by t as

_V �(x(t)) =
1

�
V �(x(t))� r(t): (9)

Note that this should hold for any policy including the optimal policy given by (7).

5



tt
0

tt
0

  (t)δ 

V(t)^

V(t)^

V(t)^

A

B

C

D

Figure 1: Possible updates for the value function estimate V̂ (t) for an instantaneous TD
error Æ(t) = r(t)� 1

�
V (t) + _V (t). (A) A positive TD error at t = t0 can be corrected by (B)

an increase in V (t), or (C) a decrease in the time derivative _V (t), or (D) an exponentially
weighted increase in V (t) (t < t0).
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If the current estimate V of the value function is perfect, it should satisfy the consistency

condition _V (t) = 1
�
V (t) � r(t). If this condition is not satis�ed, the prediction should be

adjusted to decrease the inconsistency

Æ(t) � r(t)�
1

�
V (t) + _V (t): (10)

This is the continuous-time counterpart of the TD error (Barto et al., 1983; Sutton, 1988).

3.1 Updating the Level and the Slope

In order to bring the TD error (10) to zero, we can tune either the level of the value function

V (t), its time derivative _V (t), or both, as illustrated in Figure 1(A,B,C). Now we consider

the objective function (Baird, 1993)

E(t) =
1

2
jÆ(t)j2: (11)

From de�nition (10) and the chain rule _V (t) = @V
@x

_x(t), the gradient of the objective function

with respect to a parameter wi is given by

@E(t)

@wi

= Æ(t)
@

@wi

�
r(t)�

1

�
V (t) + _V (t)

�
= Æ(t)

"
�
1

�

@V (x;w)

@wi

+
@

@wi

 
@V (x;w)

@x

!
_x(t)

#
:

Therefore, the gradient descent algorithm is given by

_wi = ��
@E

@wi
= �Æ(t)

"
1

�

@V (x;w)

@wi
�

@

@wi

 
@V (x;w)

@x

!
_x(t)

#
; (12)

where � is the learning rate.

A potential problem with this update algorithm is its symmetry in time. Since the

boundary condition for the value function is given at t!1, it would be more appropriate

to update the past estimates without a�ecting the future estimates. Below, we consider

methods for implementing the \back-up" of TD errors.

3.2 Backward Euler Di�erentiation: Residual Gradient and TD(0)

One way of implementing the back-up of TD errors is to use the backward Euler approxi-

mation of time derivative _V (t). By substituting _V (t) = (V (t)� V (t��t))=�t into (10), we

have

Æ(t) = r(t) +
1

�t

�
(1�

�t

�
)V (t)� V (t��t)

�
: (13)

Then, the gradient of the squared TD error (11) with respect to the parameter wi is given

by
@E(t)

@wi
= Æ(t)

1

�t

"
(1�

�t

�
)
@V (x(t);w)

@wi
�

@V (x(t��t);w)

@wi

#
:
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A straightforward gradient descent algorithm is given by

_wi = �Æ(t)

"
�(1�

�t

�
)
@V (x(t);w)

@wi

+
@V (x(t��t);w)

@wi

#
: (14)

An alternative way is to update only V (t��t) without explicitly changing V (t) by

_wi = �Æ(t)
@V (x(t��t);w)

@wi
: (15)

The Euler discretized TD error (13) coincides with the conventional TD error

Æt = rt + Vt � Vt�1

by taking the discount factor  = 1 � �t
�
' e�

�t
� and rescaling the values as Vt =

1
�t
V (t).

The update schemes (14) and (15) correspond to the residual-gradient (Baird, 1995; Harmon

et al., 1996) and TD(0) algorithms, respectively. Note that time step �t of the Euler

di�erentiation does not have to be equal to the control cycle of the physical system.

3.3 Exponential Eligibility Trace: TD(�)

Now let us consider how an instantaneous TD error should be corrected by a change in the

value V as a function of time. Suppose an impulse of reward is given at time t = t0. Then,

from de�nition (4), the corresponding temporal pro�le of the value function is

V �(t) =

(
e�

t0�t

� t � t0;
0 t > t0;

Because the value function is linear with respect to the reward, the desired correction of the

value function for an instantaneous TD error Æ(t0) is

V̂ (t) =

(
Æ(t0)e

�
t0�t

� t � t0;
0 t > t0;

as illustrated in Figure 1(D). Therefore, the update of wi given Æ(t0) should be made as

_wi = �
Z t0

�1
V̂ (t)

@V (x(t);w)

@wi
dt = �Æ(t0)

Z t0

�1
e�

t0�t

�
@V (x(t);w)

@wi
dt: (16)

We can consider the exponentially weighted integral of the derivatives as the eligibility trace

ei for the parameter wi. Then, a class of learning algorithms is derived as

_wi = �Æ(t)ei(t);

_ei(t) = �
1

�
ei(t) +

@V (x(t);w)

@wi

; (17)
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where 0 < � � � is the time constant of the eligibility trace.

If we discretize (17) with time step �t, it coincides with the eligibility trace update in

TD(�)

ei(t+�t) = �ei(t) +
@Vt
@wi

with � = 1��t=�
1��t=�

.

4 Improving the Policy

Now we consider ways for improving the policy u(t) = �(x(t)) using its associated value

function V (x). One way is to stochastically improve the policy using the actor-critic method,

in which the TD error is used as the e�ective reinforcement signal. Another way is to take

a greedy policy with respect to the current value function

u(t) = �(x(t)) = argmax
u2U

"
r(x(t);u) +

@V (x)

@x
f(x(t);u)

#
(18)

using the knowledge about the reward and the system dynamics.

4.1 Continuous Actor-Critic

First, we derive a continuous version of the actor-critic method (Barto et al., 1983). By

comparing (10) and (18), we can see that the TD error is maximized by the greedy action

u(t). Accordingly, in the actor-critic method, the TD error is used as the reinforcement

signal for policy improvement.

We consider the policy implemented by the actor as

u(t) = s
�
A(x(t);wA) + �n(t)

�
; (19)

where A(x(t);wA) 2 Rm is a function approximator with a parameter vector wA, n(t) 2 Rm

is noise, and s() is a monotonically increasing output function. The parameters are updated

by the stochastic real-valued (SRV) unit algorithm (Gullapalli, 1990) as

_wA
i = �AÆ(t)n(t)

@A(x(t);wA)

@wA
i

: (20)

4.2 Value-Gradient Based Policy

In discrete problems, a greedy policy can be found by one-ply search for an action that max-

imizes the sum of the immediate reward and the value of the next state. In the continuous

case, the right hand side of (18) has to be minimized over a continuous set of actions at
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every instant, which can in general be computationally expensive. However, when the rein-

forcement r(x;u) is convex with respect to the action u and the system dynamics f(x;u) is

linear with respect to the action u, the optimization problem in (18) has a unique solution

and we can derive a closed-form expression of the greedy policy.

Here, we assume that the reward r(x;u) can be separated into two parts: the reward for

state R(x), which is given by the environment and unknown, and the cost for action S(u),

which can be chosen as a part of the learning strategy. We speci�cally consider the case

r(x;u) = R(x)�
mX
j=1

Sj(uj); (21)

where Sj() is a cost function for action variable uj. In this case, the condition for the greedy

action (18) is given by

�S 0
j(uj) +

@V (x)

@x

@f(x;u)

@uj
= 0 (j = 1; :::; m)

where @f(x;u)
@uj

is the j-th column vector of the n�m input gain matrix @f(x;u)
@u

of the system

dynamics. We now assume that the input gain @f(x;u)
@u

is not dependent on u, i.e., the system

is linear with respect to the input, and that the action cost function Sj() is convex. Then, the

the above equation has a unique solution uj = S 0
j
�1
�
@V (x)
@x

@f(x;u)
@uj

�
; where S 0

j() is a monotonic

function. Accordingly, the greedy policy is represented in vector notation as

u = S 0�1

 
@f(x;u)

@u

T @V (x)

@x

T!
; (22)

where @V (x)
@x

T
represents the steepest ascent direction of the value function, which is then

transformed by the \transpose" model @f(x;u)
@u

T
into a direction in the action space, and the

actual amplitude of the action is determined by gain function S 0�1().

Note that the gradient @V (x)
@x

can be calculated by back-propagation when the value func-

tion is represented by a multi-layer network. The assumption of linearity with respect to the

input is valid in most Newtonian mechanical systems (e.g., the acceleration is proportional

to the force) and the gain matrix @f(x;u)
@u

can be calculated from the inertia matrix. When

the dynamics is linear and the reward is quadratic, the value function is also quadratic and

(22) coincides with the optimal feedback law for a linear quadratic regulator (LQR; see, e.g.,

Bertsekas (1995)).

Feedback control with a sigmoid output function

A common constraint in control tasks is that the amplitude of the action, such as the force

or torque, is bounded. Such a constraint can be incorporated into the above policy with an

appropriate choice of the action cost.
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Suppose that the amplitude of the action is limited as jujj � umax
j (j = 1; :::; m). We

then de�ne the action cost as

Sj(uj) = cj

Z uj

0
s�1

 
u

umax
j

!
du; (23)

where s() is a sigmoid function that saturates as s(�1) = �1. In this case, the greedy

feedback policy (22) results in feedback control with a sigmoid output function

uj = umax
j s

 
1

cj

@f(x;u)

@uj

T @V (x)

@x

T!
: (24)

In the limit of cj ! 0, the policy will be a \bang-bang" control law

uj = umax
j sign

"
@f(x;u)

@uj

T @V (x)

@x

T#
: (25)

4.3 Advantage Updating

When the model of the dynamics is not available, like in Q-learning (Watkins, 1989), we can

select a greedy action by directly learning the term to be maximized in the HJB equation

r(x(t);u(t)) +
@V �(x)

@x
f(x(t);u(t)):

This idea has been implemented in the \advantage updating" method (Baird, 1993; Harmon

et al., 1996) in which both the value function V (x) and the advantage function A(x;u)

are updated. The optimal advantage function A�(x;u) is represented in the current HJB

formulation as

A�(x;u) = r(x;u)�
1

�
V �(x) +

@V �(x)

@x
f(x;u); (26)

which takes the maximum value of zero for the optimal action u. The advantage function

A(x;u) is updated by

A(x;u) max
u

[A(x;u)] + r(x;u)�
1

�
V �(x) + _V (x) = max

u

[A(x;u)] + Æ(t) (27)

under the constraint maxu[A(x;u)] = 0.

The main di�erence between the advantage updating and the value-gradient based policy

described above is while the value V and the advantage A are updated in the former, the

value V and the model f are updated and their derivatives are used in the latter. When

the input gain model @f(x;u)
@u

is known or easy to learn, the use of the closed-form policy (22)

in the latter approach is advantageous because it simpli�es the process of maximizing the

right-hand side of the HJB equation.
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5 Simulations

We tested the performance of the continuous RL algorithms in two nonlinear control tasks;

a pendulum swing-up task (n=2, m=1) and a cart-pole swing-up task (n=4, m=1). In each

of these tasks, we compared the performance of three control schemes:

1. Actor-critic: control by (19) and learning by (20).

2. Value-gradient based policy (24) with an exact gain matrix.

3. Value-gradient based policy (24) with concurrent learning of the input gain matrix.

The value functions were updated using the exponential eligibility trace (17) except in the

experiments of Figure 6.

Both the value and policy functions were implemented by normalized Gaussian networks,

as described in Appendix B. A sigmoid output function s(x) = 2
�
arctan(�

2
x) (Hop�eld, 1984)

was used in both (19) and (24).

In order to promote exploration, we incorporated a noise term �n(t) in both policies

(19) and (24) (see equations (33) and (34) in Appendix B). We used low-pass �ltered noise

�n _n(t) = �n(t) + N(t) where N(t) denotes normal Gaussian noise. The size of the per-

turbation � was tapered o� as the performance improved (Gullapalli, 1990). We took the

modulation scheme � = �0min
h
1;max

h
0; V1�V (t)

V1�V0

ii
, where V0 and V1 are the minimal and

maximal levels of the expected reward.

The physical systems were simulated by a fourth order Runge-Kutta method while the

learning dynamics was simulated by a Euler method, both with the time step of 0.02 sec.

5.1 Pendulum Swing-Up with Limited Torque

First, we tested the continuous-time RL algorithms in the task of a pendulum swinging

upwards with limited torque (Figure 2) (Atkeson, 1994; Doya, 1996). The control of this one

degree of freedom system is non-trivial if the maximal output torque umax is smaller than

the maximal load torque mgl. The controller has to swing the pendulum several times to

build up momentum and also has to decelerate the pendulum early enough to prevent the

pendulum from falling over.

The reward was given by the height of the tip of the pendulum, i.e., R(x) = cos �. The

policy and value functions were implemented by normalized Gaussian networks with 15� 15

basis functions to cover the two-dimensional state space x = (�; !). In modeling the system

dynamics, 15� 15� 2 bases were used for the state-action space (�; !; u).

Each trial was started from an initial state x(0) = (�(0); 0) where �(0) was selected

randomly in [��; �]. A trial lasted for 20 seconds unless the pendulum was over-rotated
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l
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Figure 2: Control of a pendulum with limited torque. The dynamics were given by _� = !
and ml2 _! = ��! + mgl sin � + u. The physical parameters were m = l = 1, g = 9:8,
� = 0:01, and umax = 5:0. The learning parameters were � = 1:0, � = 0:1, c = 0:1, �n = 1:0,
�0 = 0:5, V0 = 0, V1 = 1, � = 1:0, �A = 5:0, and �M = 10:0, in the following simulations
unless otherwise speci�ed.

(j�j > 5�). Upon such a failure, the trial was terminated with a reward r(t) = �1 for

one second. As a measure of the swing-up performance, we de�ned the time in which the

pendulum stayed up (j�j < �=4) as tup. A trial was regarded as \successful" when tup > 10

seconds. We used the number of trials made before achieving ten successful trials as the

measure of the learning speed.

Figure 3 illustrates the landscape of the value function and a typical trajectory of swing-

up using the value-gradient based policy. The trajectory starts from the bottom the basin,

which corresponds to the pendulum hanging down-ward, and spirals up the hill along the

ridge of the value function until it reaches to the peak, which corresponds to the pendulum

standing up-ward.

Actor-Critic, Value Gradient and Physical Model

We �rst compared the performance of the three continuous RL algorithms with the discrete

actor-critic algorithm (Barto et al., 1983). Figure 4 shows the time course of learning in �ve

simulation runs and Figure 5 shows the average number of trials needed until ten successful

swing-ups. The discrete actor-critic algorithm took about �ve times more trials than the

continuous actor-critic. Note that the continuous algorithms were simulated with the same

time step as the discrete algorithm. Consequently, the performance di�erence was due to a
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on a uniform grid that covers the area [��; �]� [�5=2�; 5=2�].
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Figure 4: Comparison of the time course of learning with di�erent control schemes: (A)
discrete actor-critic, (B) continuous actor-critic, (C) value-gradient based policy with an
exact model, (D) value-gradient policy with a learned model (note the di�erent scales). tup:
time in which the pendulum stayed up. In the discrete actor-critic, the state space was
evenly discretized into 30� 30 boxes and the action was binary (u = �umax). The learning
parameters were  = 0:98, � = 0:8, � = 1:0, and �A = 0:1.
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Figure 5: Comparison of learning speeds with discrete and continuous actor-critic and value-
gradient based policies with an exact and learned physical models. The ordinate is the
number of trials made until ten successful swing-ups.

better spatial generalization with the normalized Gaussian networks. Whereas the continu-

ous algorithms performed well with 15 � 15 basis functions, the discrete algorithm did not

achieve the task using 15�15, 20�20, or 25�25 grids. The result shown here was obtained

by 30� 30 grid discretization of the state.

Among the continuous algorithms, the learning was fastest with the value-gradient based

policy using an exact input gain. Concurrent learning of the input gain model resulted in

slower learning. The actor-critic was the slowest. This was due to more e�ective exploita-

tion of the value function in the gradient based policy (24) compared to the stochastically

improved policy (19) in the actor-critic.

Methods of Value Function Update

Next, we compared the methods of value function update algorithms (14), (15), and (17)

using the greedy policy with an exact gain model (Figure 6). Although the three algorithms

attained comparable performances with the optimal settings for �t and �, the method with

the exponential eligibility trace performed well in the widest range of the time constant

and the learning rate. We also tested the purely symmetric update method (12), but its

performance was very unstable even when the learning rates for the value and its gradient

was tuned carefully.
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Figure 6: Comparison of di�erent value function update methods with di�erent settings for
the time constants. (A) Residual gradient (Eq. 14). (B) Single step eligibility trace (Eq. 15).
(C) Exponential eligibility (Eq. 17). The learning rate � was roughly optimized for each
method and each setting of time step �t of the Euler approximation or time constant � of
the eligibility trace. The performance was very unstable with �t = 1:0 in the discretization-
based methods.
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Figure 7: E�ects of parameters of the policy. (A) Control cost coeÆcient c. (B) Reward
function R(x) and perturbation size �0.

Action Cost, Graded Reward, and Exploration

We then tested how the performance depended on the action cost c, the shape of the reward

function R(x), and the size of the exploration noise �0. Figure 7(A) compares the perfor-

mance with di�erent action costs c=0, 0.01, 0.1, and 1.0. The learning was slower with a

large cost for the torque (c = 1) because of the weak output in the early stage. The results

with bang-bang control (c = 0) tended to be less consistent than with sigmoid control with

the small costs (c = 0:01; 0:1).

Figure 7(B) summarizes the e�ects of the reward function and exploration noise. When

binary reward function

R(x) =

(
1 j�j < �=4
0 otherwise

was used instead of cos(�), the task was more diÆcult to learn. However, a better perfor-
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mance was observed with the use of negative binary reward function

R(x) =

(
0 j�j < �=4
�1 otherwise.

The di�erence was more drastic with a �xed initial state x(0) = (�; 0) and no noise � = 0,

for which no success was achieved with the positive binary reward. The better performance

with the negative reward was due to the initialization of the value function as V (x) = 0.

As the value function near � = � is learned as V (x) ' �1, the value-gradient based policy

drives the state to unexplored areas which are assigned higher values V (x) ' 0 by default.

5.2 Cart-Pole Swing-Up Task

Next, we tested the learning schemes in a more challenging task of cart-pole swing-up (Fig-

ure 8), which is a strongly nonlinear extension to the common cart-pole balancing task (Barto

et al., 1983). The physical parameters of the cart-pole were the same as in (Barto et al.,

1983), but the pole had to be swung up from an arbitrary angle and balanced. Marked

di�erences from the previous task were that the dimension of the state space was higher and

the input gain was state dependent.

The state vector was x = (x; v; �; !), where x and v are the position and the velocity of

the cart. The value and policy functions were implemented by normalized Gaussian networks

with 7 � 7 � 15 � 15 bases. A 2 � 2 � 4 � 2 � 2 basis network was used for modeling the

system dynamics. The reward was given by R(x) = cos ��1
2

.

When the cart bumped into the end of the track or when the pole over-rotated (j�j > 5�),

a terminal reward r(t) = 1 was given for 0.5 second. Otherwise, a trial lasted for 20 seconds.

Figure 8 illustrates the control performance after 1000 learning trials with the greedy policy

using the value gradient and a learned input gain model.

Figure 9(A) shows the value function in the 4D state space x = (x; v; �; !). Each of

the 3 � 3 squares represents a subspace (�; !) with di�erent values of (x; v). We can see

the 1-shaped ridge of the value function, which is similar to the one seen in the pendulum

swing-up task (Figure 3). Also note the lower values with x and v both positive or negative,

which signal the danger of bumping into the end of the track.

Figure 9(B) shows the most critical components of the input gain vector @ _!
@u
. The gain

represents how the force applied to the cart is transformed as the angular acceleration of

the pole. The gain model could successfully capture the change of the sign with the upward

(j�j < �=2) orientation and the downward (j�j > �=2) orientation of the pole.

Figure 10 is a comparison of the number of trials necessary for 100 successful swing-ups.

The value gradient based greedy policies performed about three times faster than the actor-

critic. The performances with the exact and learned input gains were comparable in this

19



A

B

C

Figure 8: Examples of cart-pole swing up trajectories. The arrows indicate the initial position
of the pole. (A) A typical swing up from the bottom position. (B) When a small perturbation
! > 0 is given, the cart moves to the right and keeps the pole upright. (C) When a larger
perturbation is given, the cart initially tries to keep the pole upright, but then brakes to
avoid collision with the end of the track and swings the pole up on the left side. The learning
parameters were � = 1:0, � = 0:5, c = 0:01, �n = 0:5, �0 = 0:5, V0 = 0, V1 = 1, � = 5:0,
�A = 10:0, and �M = 10:0.
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Figure 10: Comparison of the number of trials until 100 successful swing-ups with the actor-
critic, value-gradient based policy with an exact and learned physical models.

case. This was because the learning of the physical model was relatively easy compared to

the learning of the value function.

6 Discussion

The results of the above simulations can be summarized as follows. 1) The swing-up task was

accomplished by the continuous actor-critic in a number of trials several times fewer than by

the conventional discrete actor-critic (Figures 4 and 5). 2) Among the continuous methods,

the value-gradient based policy with a known or learned dynamic model performed signif-

icantly better than the actor-critic (Figures 4, 5, and 10). 3) The value function update

methods using exponential eligibility traces was more eÆcient and stable than the meth-

ods based on Euler approximation (Figure 6). 4) Reward related parameters, such as the

landscape and the baseline level of the reward function, greatly a�ect the speed of learning

(Figure 7). 5) The value-gradient based method worked well even when the input gain was

state dependent (Figures 9 and 10)

Among the three major RL methods, namely, the actor critic, Q-learning, and model-

based look ahead, only the Q-learning has been extended to continuous-time cases as ad-

vantage updating (Baird, 1993). This paper presents continuous-time counterparts for all

three of the methods based on HJB equation (6) and therefore provides a more complete

repertoire of continuous RL methods. A major contribution of this paper is the derivation

of the closed-form policy (22) using the value gradient and the dynamic model. One critical

issue in advantage updating is the need for �nding the maximum of the advantage function
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on every control cycle, which can be computationally expensive except in special cases like

linear quadratic problems (Harmon et al., 1996). As illustrated by simulation, the value

gradient based policy (22) can be applied to a broad class of physical control problems using

a priori or learned models of the system dynamics.

The usefulness of value gradients in RL was considered by Werbos (1990) for discrete-

time cases. The use of value gradients was also proposed by Dayan and Singh (1996) with

the motivation being to eliminate the need for updating the value function in advantage

updating. Their method, however, in which the value gradients @V
@x

are updated without

updating the value function V (x) itself, is applicable only to non-discounted problems.

When the system or the policy is stochastic, HJB equation (6) will include second-order

partial derivatives of the value function

1

�
V �(x(t)) = max

u(t)2U

"
r(x(t);u(t)) +

@V �(x)

@x
f(x(t);u(t)) + tr

 
@2V �(x)

@x2
C

!#
; (28)

where C is the covariance matrix of the system noise (see, e.g., (Fleming and Soner, 1993)).

In our simulations, the methods based on deterministic HJB equation (6) worked well

although we incorporated noise terms in the policies to promote exploration. One reason

for this is that the noise was small enough so that the contribution of the second-order term

was minor. Another reason could be that the second-order term has a smoothing e�ect

on the value function and this was implicitly achieved by the use of the smooth function

approximator. This point needs further investigation.

The convergent properties of HJB-based RL algorithms were recently shown for deter-

ministic (Munos, 1997) and stochastic (Munos and Bourgine, 1998) cases using a grid-based

discretization of space and time. However, the convergent properties of continuous RL algo-

rithms combined with function approximators remain to be studied. When a continuous RL

algorithm is numerically implemented with a �nite time step, as shown in sections 3.2 and

3.3, it becomes equivalent to a discrete-time TD algorithm, for which some convergent prop-

erties have been shown with the use of function approximators (Gordon, 1995; Tsitsiklis and

Van Roy, 1997). For example, the convergence of TD algorithms has been shown with the

use of a linear function approximator and on-line sampling (Tsitsiklis and Van Roy, 1997),

which was the case with our simulations.

However, the above result only considers value function approximation for a given policy

and does not guarantee the convergence of the entire RL process to a satisfactory solution.

For example, in our swing-up tasks, the learning sometimes got stuck in a locally optimal

solution of endless rotation of the pendulum when a penalty for over-rotation was not given.

The use of �xed smooth basis functions has a limitation in that steep cli�s in the value

or policy functions cannot be achieved. Despite some negative didactic examples (Tsitsiklis

and Van Roy, 1997), methods that dynamically allocate or reshape basis functions have been
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successfully used with continuous RL algorithms, for example, in a swing-up task (Schaal,

1997) and in a stand-up task for a three-link robot (Morimoto and Doya, 1998). Elucidation

of the conditions under which the proposed continuous RL algorithms work successfully,

for example, the properties of the function approximators and the methods for exploration,

remains the subject of future empirical and theoretical studies.
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Appendix A: HJB Equation for Discounted Reward

According to the optimality principle, we divide the integral in (5) into two parts [t; t+�t]

and [t+�t;1) and then solve a short-term optimization problem

V �(x(t)) = max
u[t;t+�t]

"Z t+�t

t
e�

s�t
� r(x(s);u(s))ds+ e�

�t
� V �(x(t +�t))

#
: (29)

For a small �t, the �rst term is approximated as

r(x(t);u(t))�t + o(�t)

and the second term is Taylor expanded as

V �(x(t+�t)) = V �(x(t)) +
@V �

@x(t)
f(x(t);u(t))�t + o(�t):

By substituting them into (29) and collecting V �(x(t)) on the left-hand side, we have an

optimality condition for [t; t+�t] as

(1� e�
�t
� )V �(x(t)) = max

u[t;t+�t]

"
r(x(t);u(t))�t+ e�

�t
�
@V �

@x(t)
f(x(t);u(t))�t + o(�t)

#
: (30)

By dividing both sides by �t and taking �t to zero, we have the condition for the optimal

value function
1

�
V �(x(t)) = max

u(t)2U

"
r(x(t);u(t)) +

@V �

@x
f(x(t);u(t))

#
: (31)

Appendix B: Normalized Gaussian Network

A value function is represented by

V (x;w) =
KX
k=1

wkbk(x) (32)
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where

bk(x) =
ak(x)PK
l=1 al(x)

; ak(x) = e�jjs
T
k
(x�ck)jj

2

:

The vectors ck and sk de�ne the center and the size of the k-th basis function. Note that

the basis functions located on the ends of the grids are extended like sigmoid functions by

the e�ect of normalization.

In the current simulations, the centers are �xed in a grid, which is analogous to the

\boxes" approach (Barto et al., 1983) often used in discrete RL. Grid allocation of the basis

functions enables eÆcient calculation of their activation as the outer product of the activation

vectors for individual input variables.

In the actor-critic method, the policy is implemented as

u(t) = umaxs

 X
k

wA
k bk(x(t)) + �n(t)

!
; (33)

where s is a component-wise sigmoid function and n(t) is the noise.

In the value gradient-based methods, the policy is given by

u(t) = umaxs

 
1

c

@f(x;u)

@u

T X
k

wk
@bk(x)

@x

T

+ �n(t)

!
: (34)

To implement the input gain model, a network is trained to predict the time derivative

of the state from x and u

_x(t) ' f̂(x;u) =
X
k

wM
k bk(x(t);u(t)): (35)

The weights are updated by

_wM
k (t) = �M( _x(t)� f̂(x(t);u(t)))bk(x(t);u(t)); (36)

and the input gain of the system dynamics is given by

@f(x;u)

@u
'
X
k

wM
k

@bk(x;u)

@u

�����
u=0

: (37)
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