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Chapter 3: Transport Layer

Our goals:
0 understand principles O learn about fransport
behind transport layer protocols in the

layer services: Internet:

0 multiplexing/demultipl 0 UDP: connectionless
exing transport

0 reliable data transfer 0 TCP: connection-oriented

0 flow control fransport

0 congestion control o TCP congestion control
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Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and 0 segment structure
demultiplexing 0 reliable data fransfer

0 3.3 Principles of o flow control
reliable data transfer 0 connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

0 3.4 Connectionless
transport: UDP
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Transport services and protocols

0 provide /ogical communication

between app processes Fr
running on different hosts R

0 transport protocols run in
end systems
0 send side: breaks app
messages into segments, 1)
passes to network layer E !
0 rev side: reassembles

&
N’
{ data link |

segments into messages, i
passes to app layer =

0 more than one transport

protocol available to apps
0 Internet: TCP and UDP
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Transport vs. network layer

0 network layer: logical Household analogy:
communication 12 kids sending letters
between hosts to 12 kids

0 transport layer: logical O processes = kids

communication 0 app messages = letters
between processes in envelopes

0 relies on, enhances,

: 0 hosts = houses
network layer services

O fransport protocol =
Ann and Bill

0 network-layer protocol
= postal service
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Internet transport-layer protocols

0 reliable, in-order
delivery (TCP)

0 congestion control 3 =t
o flow control
=
0 connection setup %
. { data link |
0 unreliable, unordered i 3
delivery: UDP
0 extension of "best- -
effort" IP %
. . Pretuork |
0 services hot available:

0 delay guarantees

0 bandwidth guarantees
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Chapter 3 outline

[m}

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

O

O

[m]

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

Q = process

[ =socket

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with|
header (later used for
demultiplexing)

P1D application (P2 @M
transport transport fransport
network network network
link link link
physical physical physical

host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

0 host receives IP datagrams
0 each datagram has source
IP address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)
O host uses IP addresses & port
numbers to direct segment to
appropriate socket

[m}

m]

32 bits

source port #l dest port #

other header fields

application
data
(message)

TCP/UDP segment format
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Connectionless demultiplexing

0 Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (33111) ;

DatagramSocket mySocket2 = new
DatagramSocket (33222) ;

O UDP socket identified by
two-tuple:
(dest IP address, dest port number)

0 When host receives UDP
segment:
0 checks destination port
number in segment
o directs UDP segment to
socket with that port
number
0 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket
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Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157
client DP: 6428

server

SP: 5775
DP: 6428 Client

IP:A IP: C IP:B

SP provides “return address”
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Connection-oriented demux

0 TCP socket identified
by 4-tuple:
0 source IP address
0 source port number
0 dest IP address
o dest port number
0 recv host uses all four
values to direct
segment to appropriate
socket

0 Server host may support

many simultaneous TCP
sockets:

0 each socket identified by
its own 4-tuple

0 Web servers have

different sockets for
each connecting client
0 non-persistent HTTP will
have different socket for
each request
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Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client DP: §0 server DP: §0 Clignf
IP: A S-IP: A P: C s-IP: B IP:B
D-IP:C D-IP:C
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Connection-oriented demux:
Threaded Web Server

WDl == B
SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client | 0P80 server DP:80 | Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Principles of
reliable data transfer

0 3.4 Connectionless
transport: UDP

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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Principles of Reliable data transfer

O important in app., transport, link layers
O top-10 list of important networking topics!

8g
a =
Q
L8]
o A '
- (Feiabie channe rdt_send() Eoolldaliver data(}
95 relicble dota reliable data
&5 transter pratocal fransfer protocal
5 [+] (zending side) (receiving side)

uar_sena 0} L=z trae revor

Junrelicble channel J

(b) service implernentation

(a) provided service

characteristics of unreliable channel will determine
complexity of reliable data ftransfer protocol (rdt)

O
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Reliable data transfer: getting started

rdt_send() : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver_data() : called by
rdt to deliver data to upper

\ rdt_send() | [daia]
send [reliable data
. transfer protocol
side  |sencing side]

udt_send( )I @

[data | [deliver datal(]

relioble data receive
transfer protocol ;
receiving side side

Irdt_rcv 9]

/ Ll iunrelmble channel j:

udt_send() : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel
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Reliable data transfer: getting started

we'll:
0 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
0 consider only unidirectional data transfer
0 but control info will flow on both directions!
0 use finite state machines (FSM) to specify

sender, receiver
event causing state fransition

actions taken on state transition

event @
actions )
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state: when in this
“state” next state
uniquely determined
by next event




Rd11.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
0 ho bit errors
0 no loss of packets
0 separate FSMs for sender, receiver:
0 sender sends data into underlying channel
0 receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver
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Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
0 checksum to detect bit errors
0 the question: how to recover from errors:

0 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

0 negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

0 sender refransmits pkt on receipt of NAK
0 new mechanisms in rdt2.0 (beyond rdt1.0):
0 error detection
0 receiver feedback: control msgs (ACK NAK) rcvr->sender
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rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

receiver
rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
—_— rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rovpkt) && isACK(rcvpkt)

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d kt,

rdt_rcv(rcvpkt) &&
iSNAK(rcvpkt)

—_— rdt_rcv(rcvpkt) &&
dt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Wait for
call from
below,

hrdt_rev(revpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: error scenario (no loss!)

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

rdt_rcv rcvekx &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? | sender adds seguence
0 sender doesn't know what number to each pkt
happened at receiver! 0 sender retransmits current
O can't just retransmit: pkt if ACK/NAK garbled
possible duplicate O receiver discards (doesn't
deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response
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rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

udt_send(sndpkt)

Wait for
call 0 frol
above,
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rev(rcvpkt)
&& notcorrupt(rcvpkt)
&8 isACK(rcvpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rev(rovpkt) && notcorrupt(rovpkt)
&8& has_seq0(rcvpkt)

extract(rovpkt,data)
deliver_data(data)
V sndpkt = make_pkt(ACK, chksum)
\\ udt_send(sndpkt)
rdt_rcv(rovpkt) && (corrupt(revpkt) \ rdt_rcv(revpkt) && (corrupt(revpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
y

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && ( not corrupt(rcvpkt) &&
has_seq1(rcvpkt) has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)
(sndpkY) rdlt_rcv(rovpkt) && notcorrupt(revpkt)  Ud-send(sndek)

8&& has_seq1(rcvpkt)

rdt_rcv(rcvpkt) &&

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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A A

rdt_rcv(rcvpkt) &&

( corrupt(rcvpkt) ||

isNAK (rovpkt) ) rdt_send(data)

udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

- udt_send(sndpkt)
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rdt2.1: discussion
Sender: Receiver:
0 seq # added to pkt 0 must check if received
0 two seq. #'s (0,1) will packet is duplicate
suffice. Why? 0 state indicates whether

O or1is expected pkt

0 must check if received seq #

AC.K/NAK corrupted O note: receiver can not
0 twice as many states know if its last

o state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1seq. # af sender
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rdt2.2: a NAK-free protocol

0 same functionality as rdt2.1, using ACKs only

O instead of NAK, receiver sends ACK for last pkt
received OK
0 receiver must explicitly include seq # of pkt being ACKed

0 duplicate ACK at sender results in same action as
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )
udt_send(sndpkt)

sender FSM
fragment rdt_rcv(rcvpkt)
&& notcorrupt(revpkt)
rdt_rov(rovpkt) 8& 88 isACK(revpkt,0)
(corrupt(revpkt) || A
__has_seqi(rcvpkt)) receiver FSM
udt_send(sndpkt) fragment
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-29

rdt3.0: channels with errors andloss

New assumption: Approach: sender waits

underlying channel can “reasonable” amount of

also lose packets (data time for ACK

or ACKs) 0 retransmits if no ACK

0 checksum, seq. #, ACKs, received in this time
retransmissions will be 0 if pkt (or ACK) just delayed
of help, but not enough (not lost):

0 retransmission will be
duplicate, but use of seq.
#'s already handles this

0 receiver must specify seq
# of pkt being ACKed

0 requires countdown timer
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rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\  sndpkt = make_pkt(0, data, checksum) ( corrupt(revpkt) ||

\ udtﬁse‘nd(sndpkt) isACK(rcvpkt, 1) )
rdt_rcv(rcvpkt) \ start_timer A
A
V\‘/‘agf'l’f timeout
call Oirom udt_send(sndpkt)
start_timer

rdt_rcv(revpkt)
&& notcorrupt(rcvpkt;
8&& isACK(rcvpkt, 1)
stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
stop_timer

timeout b

call 1 from
adtsendmapkt) above
start_timer (J

rdt_rcv(revpkt)
A

rdt_send(data)

rdt_rcv(revpkt) &&

( corrupt(revpkt) || sndpkt = make_pkt(1, data, checksum)
iSACK(rcvpkt,0) ) udt_send(sndpkt)
_/\ start_timer
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rdt3.0 in action

sender recaiver
sender receiver R

sanct pkiD “'\_\“ e send pi0 H“""-—-___. fev pid0
e and ACKD MK send ACKC
o ACHD / Tov ACKD
o AL send pkil
send pkl1 okt . \* 0

— o pidl
! sand ACK]

FowACK]

send pki0 ot
N 1cv pkil
> send ACKD

(o) operation with no loss

ot .
g pid
e ‘_-“H"““b fev pikt]

send ACK]

v pidd
sand ACKD

[B) lost packet
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rdt3.0 in action

Tev pidl
send ACKD

timeout
sesend pitl

""‘"—'-—-..._______"cv phtl

EVACK]
sand pi0

() lost ACK (d) premature timeout
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Performance of rdt3.0

0 rdt3.0 works, but performance stinks
0 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T _ L (packet length in bits) _ 8kb/pkt
fransmit ™ R'(transmission rate, bps) = 10**9 b/sec

U _ L/R 008
sender  prTLL /R "~ 30008

= 8 microsec

= 0.00027

0 U gengert Utilization - fraction of time sender busy sending
0 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
0 network protocol limits use of physical resources!
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rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fwz-------------ceeemmeeeeeeae
last packet bit transmitted, t =L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send nex
packet, t=RTT +L/R

U - L/R 008 00027
sender  poT . L/R 30008
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Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
0 range of sequence numbers must be increased
0 buffering at sender and/or receiver

o  shop-ond- n

0 Two generic forms of pipelined protocols: go-Back-N,
selective repeat
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Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —o------------------oomeeee]
last bit transmitted, t =L /R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 39 packet arrives, send ACK

Increase utilization
/by a factor of 3!
‘

U = =
sender  prT, /R 30.008
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Go-Back-N

Sender:
0 k-bit seq # in pkt header
0 “window" of up to N, consecutive unack'ed pkts allowed

send_base  nexfseqnum dready usable, nol
ack'ed yat sent

r v
sent, not
""" """HHH[”][”] yet ack'ed [| not usable
| -

window size —4
N

0 ACK(n): ACKs all pkts up to, including seq # n - “"cumulative ACK"
0 may deceive duplicate ACKs (see receiver)

0 timer for each in-flight pkt

0 timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
ndpkt[r = make_ ,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum-++
}
A else
refuse_data(data
base=1 —_data( )

nextseqnum=1

rdt_rcv(rcvpkt)

O timeout
» —_—
start_timer
3 udt_send(sndpkt[base])
C udt_send(sndpkilbase+1])
0O

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
S~a - && notcurrupt(rcvpkt)
A ~-—_ && hasseqnum(revpkt,expectedsegnum)
expectedseqnum=1 > Qextract(rcvpkl,data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) ~ sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
0 may generate duplicate ACKs
0 need only remember expectedseqnum
0 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
0 Re-ACK pkt with highest in-order seq #
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&& corrupt(revpkt
—_— udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer Transport Layer 3-39
H sender receiver
GBN in — E—
— send pki0 ‘\\.
row pkid
m send pktl send ACKD
rev phil
sendpki2 —_ (1gss send ACKI
send pkitd
(wait) rov pkid, discare
¥ send ACK
rev ACKO
send pktd
rev ACKT rcv pidd, discard
send pki5 -\\"—\-‘. send ACK]
rev pkis, discard
Pt 2 timeout Song ACKI

send pki2 \\_\‘.
send pkid rov pki2, deliver

send pkid \‘ send "‘?ﬁ )
send pkis rov pktd, deliver
\ send ACK3
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Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts
0 buffers pkts, as needed, for eventual in-order delivery
to upper layer
0 sender only resends pkts for which ACK not
received
0 sender timer for each unACKed pkt
0 sender window
o N consecutive seq #'s
0 again limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows

send base  nexfsegnum

already usable, not
r v ack'ed yet sent
sent, not
0000 RUCHTHTIUIOONONND | seviastea [ roreseme
t_ whdowsize—4
]

' (a) sender view of sequence numbers

i

i out of order

i acceptable
(buffered) but ihin window”
already ack’ed (withiin wi 3

s‘ I
J00ODDT0DIRNETENIENITINOOD  mostmmanet roreseee
yet received

t_ indow size—4
N
rev_base
{b) receiver view of sequence numbers
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Selective repeat

—sender——— —receiver
data from above : pkf N in [revbase, revbase+N-1]
0 if next available seq # in 0 send ACK(n)
window, send pkt 0 out-of-order: buffer
timeout(n): 0 in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkf nin [revbase-N, revbase-1]

0 resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
0 mark pkt n as received

0 if n smallest unACKed pkt,

advance window base to . ACK("')
next unACKed seq # otherwise:
0 ighore

Transport Layer 3-44

Selective repeat in action

pktD sent

01 230456 788 T b i rova, delivered, AGHD semt

pktl sent oftz34]s673859
0123456789

pkt2 sent
[frz3laseres—m

X
tloss)

phtl

01[2345]67389

. ACKL sent

pkt3 sent, window full

[br1eslaseres

pkt3 rovd, Iuffered. ACK3 sent

o1[z345[6789

ACKO rovd, pktd sent
oftz234seras

ACKL ¥ pktS sent

o123asgleres

pkt2 TIMEOUT. pkt? resent

oif23ssglevras

pktd rovd, buffered, ACK{ sent
0123456789
pktS rovd, buffered, ACKS sent

o1fz345l6e789

pktZ rovd, pkt2,pktd, phtd.phkts
delivered, ACK2 sent

012345 789)

ACK3 rovd. nothing sent

oifzsaslersa

Selective repeat: (Sl ety
i o0 2
dilemma o T

Example:
0 seq#s:0,1,2,3

. . i FRCEVE pACKEL
0 window size=3 "

th seq number 0

0 receiver sees no
difference in two
scenarios!

O incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size? (b)
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Chapter 3 outline
0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP
0 3.2 Multiplexing and 0 segment structure

reliable data transfer

demultiplexing o
o flow control
a

3.3 Principles of reliable '
data transfer connection management
0 3.4 Connectionless 036 Prm{:nples of
transport: UDP congestion control
0 3.7 TCP congestion
control
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UDP: User Datagram Protocol [RFC 768]

0 “no frills," “bare bones”
Internet transport Why is there a UDP?
fr°T°C°I N 0 no connection
| "best effort” service, UDP establishment (which can
segments may be: add delay)
7 lost 0 simple: no connection state
0 delivered out of order at sender, receiver
to app 0 small segment header
O connectionless: 0 no congestion control: UDP
0 no handshaking between can blast away as fast as
UDP sender, receiver desired
0 each UDP segment

handled independently
of others
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UDP: more

0 often used for streaming

multimedia apps 32 bits
0 loss tolerant Length, in | Source port # dest port #
0 rate sensitive bytes of UDP [~ length checksum
segment
0 other UDP uses inf,":‘diné
o DNS header
0 SNMP
0 reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format
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UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
0 treat segment contents 0 compute checksum of
as sequence of 16-bit received segment
integers 0 check if computed checksum

checksum: addition (1's equals checksum field value:
complement sum) of 0 NO - error detected
segment contents 0 YES - no error detected.
0 sender puts checksum But maybe errors

value into UDP checksum nonetheless? More later
field

Transport Layer 3-50

UDP Checksum Example

0 Using 1- complement (Simple XOR)

0 Example: with two 16-bit integers

1110011001100110
1101010101010101

00110011001 10011

checksum 1100110011001 100
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UDP Pseudo Header

0 Checksum includes IP fields as well

o 7 16 ]

Source IP Address

Destination IP Address

0 | Protocol | UDP Length
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Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and 0 segment structure
demultiplexing 0 reliable data transfer

0 3.3 Connectionless o flow control
transport: UDP 0 connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

0 3.4 Principles of
reliable data transfer
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TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

O point-to-point: O full duplex data:
0 one sender, one receiver 0 bi-directional data flow
O reliable, in-order byte in same connection
steam: ] MSS: maximum segment
size
0 connection-oriented:

0 handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

 wua U sender will not
o0 overwhelm receiver

0 no “"message boundaries”
O pipelined:
0 TCP congestion and flow
control set window size

O send & receive buffers

TCP
receive buffer
O
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TCP segment structure

32 bits

URG: urgent data countin

(generally not used) source port # | dest port # by by‘regs
ACK: ACK # sequence number of data
valid —{—acknowledgement number (not segmentsl)
PSH: push data now ZMM’IBEE Receive window  bytes
— | heekaun e
(generally not used) ch um Urg data pnfer rcvr?/willing
RST, SYN, FIN:— | OPW(S (variable length) to accept
connection estab

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
0 segment structure
o reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

0 initialize TCP variables:

0 seq. #s
o buffers, flow control
info (e.g. RevWindow)

0 client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;
0 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
0 specifies initial seq #
0 no data
Step 2: server host receives
SYN, replies with SYNACK
segment
o server allocates buffers
0 specifies server initial
seq. #
Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

Step 1 client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

@ client

close

ser‘ver‘@

FIN
oK
B close
/
e |

d wait

2 timel
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TCP Connection Management (cont.)

Step 3: client receives FIN,

@ client server@

replies with ACK. closing
o Enters “timed wait" - a
will respond with ACK
to received FINs / s
Step 4: server, receives /
ACK. Connection closed.
5 Ack
Note: with small g \
modification, can handle E closed
simultaneous FINSs. F
closed
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Connection Examples

Host 1 Host 2

[——SINSEQ . y)

Time

1
paxedl
I

50 g, ,

(a)

Host 1 Host 2
— S sEa .
gmgEO =T ——
et
L —

T ey
oM
“ S

W (i
WEy -
a.;

(b}
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TCP Connection Management (cont)

e e
a8 TEF cansacsen

e R
s
[rmmns | [ e TCP server
i i lifecycle
e s i gt omice
TCP client
lifecycle | e
e AT
.
.
CLCRE_warT EYN_REVD

ESTADLRMED o

Transport Layer 3-61

Connection state machine
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TCP seq. #'s and ACKs
Seq. #'s: @ Host A Host B'@

0 byte stream
“number” of first User _ Seqey,
: .  ACK=
byte in segment’s types W‘
data host ACKs
. , receipt of
ACKs: " so8=S— 'C, echoes
0 seq # of next byte Swﬂg,no = back 'C'
expected from
other side host ACKs
0 cumulative ACK receipt | Seqeys
) =43, Ack,
Q: how receiver handles  °f 23.‘“" &‘
out-of-order segments
0 A: TCP spec doesn't

time
say, - up to . )
i simple telnet s
implementor imple telnet scenario 1

Transport Layer 3-63

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 SampleRTT: measured time from

0 longer than RTT segment transmission until ACK
0 but RTT varies receipt

0 too short: premature 0 ignore retransmissions

timeout [l SampleRTT will vary, want
O unnecessary estimated RTT “smoother”
retransmissions 0 average several recent

too long: slow reaction measurements, not just
to segment loss current SampleRTT
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT
0 Exponential weighted moving average

0 influence of past sample decreases exponentially fast
0 typical value: @ =0.125
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia eurecom.fr

R | 1 P
N o)

RTT (miliseconds)

1 8 15 2 20 3% 4 S 5 e 71 78 8 % % 106
time (seconnds)

[F+= SampleRTT —=—Estmated RTT
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TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus "safety margin”
0 large variation in EstimatedRTT -> larger safety margin
0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT
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0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented

transport: TCP

0 segment structure

o reliable data transfer

o flow control

0 connection management
0 3.6 Principles of

congestion control
0 3.7 TCP congestion

control
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TCP reliable data transfer

TCP creates rdt
service on top of IP's
unreliable service

Pipelined segments
0 Cumulative acks

TCP uses single
retransmission timer

[m]

0 Retransmissions are
triggered by:
0 timeout events
0 duplicate acks

0 Initially consider
simplified TCP sender:
0 ignore duplicate acks

0 ignore flow control,
congestion control

[m}

O
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TCP sender events:

data rcvd from app:

timeout:

0 Create segment with

seq #

seq # is byte-stream

number of first data

byte in segment

O start timer if not
already running (think
of timer as for oldest
unacked segment)

0 expiration interval:
TimeOutInterval

O

0 refransmit segment
that caused timeout

O restart timer

Ack revd:

0 If acknowledges
previously unacked
segments

0 update what is known to
be acked

0 start timer if there are
outstanding segments
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NextSeqNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) { _TCP
switch(event)
v , sender
event: data received from application above e —

create TCP segment with sequence number NextSeqNum ! sum[;hfled ’

if (timer currently not running)
start timer
pass segment to IP

Comment:
NextSeqNum = NextSeqNum + length(data) N CondRnc

+ SendBase-1: last

event: timer timeout cumulatively

retransmit not-yet-acknowledged segment with ack'ed byte
smallest sequence number M
start timer + SendBase-1=71;
y=73, so the revr
event: ACK received, with ACK field value of y wants 73+ ;
if (y > SendBase) { y> SendBase, so
SendBase =y i}
if (there are currently not-yet-acknowledged segments) *hﬁ*dnew data is
start timer acke

}

} /* end of loop forever */
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‘W
SendBase

TCP: retransmission scenarios

Brost 4 Host e

Seq=,
9292 8 by daty
-A00
‘y

loss

+~— timeout——

S

eg=g,
2.8 bytes datg

=100

time .
lost ACK scenario

92 timeout—sy

Sendbase
=100
SendBase
=120

92 timeout—s+— Seq

eq=!

SendB K
endBase
=120 i

time
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premature timeout




TCP retransmission scenarios (more)

B st 4 Host B @

Segsg;
2, 8bytes dats

A0
Seq=199, 2 PO

% S datg
loss
ACK;m\

time
Cumulative ACK scenario

SendBase
=120

+~———— timeout——
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TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap
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Fast Retransmit

0 Time-out period often
relatively long:
0 long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

0 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

0 fast retransmit: resend

Fast retransmit algorithm:

if (y > SendBase) {
SendBase =y

start timer

}

else {

event: ACK received, with ACK field value of y

if (there are currently not-yet-acknowledged segments)

0 Sender often sends segment before fimer
many segments back-to- expires
back
0 If segment is lost,
there will likely be many
duplicate ACKs.
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increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit
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0 3.7 TCP congestion
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TCP Flow Control

flow control

. . sender won't overflow
0 receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

b— RevWindow —a

0 speed-matching

data from T application . 7
u- spare room i service: matching the
send rate to the
;. RevBuffe « receiving app's drain

rate
0 app process may be

slow at reading from
buffer
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TCP Flow control: how it works

— RevWindow —&

0 Rcvr advertises spare

datn from i iicaion 1OOM by including value
'

* process

in baffer
* RevBuffer
(Suppose TCP receiver
discards out-of-order
segments)

0 spare room in buffer
RcviWindow

LastByteRead]

of RevWindow in
segments

O Sender limits unACKed
data to RevWindow

0 guarantees receive
buffer doesn't overflow

RcvBuffer-[LastByteRcvd -
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Flow control

0 What happens if RecvWinSize = 0?
1 Silly Window Syndrom

0 What happens if RecvWinSize = 64K is too
small (lines with high bandwidth and high

latency?)
RFC 1323 Window scale option

0 Nagle's algorithm
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transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
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0 3.7 TCP congestion
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Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much
data too fast for network to handle”
0 different from flow controll
O manifestations:
0 lost packets (buffer overflow at routers)
I long delays (queueing in router buffers)
0 a top-10 problem!
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Causes/costs of congestion: scenario 1

O two senders, two
receivers

0 one router,
infinite buffers

HostA 2
hin  original data out

3

S

output link buffers

-

0 no retransmission

0 large delays

ci2 — -
- i 3 when congested
] i o i .
< ; 0 maximum
! . achievable
c/2 ci2 throughput
1'f\ 1'In
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Causes/costs of congestion: scenario 2

0 one router, finite buffers
0 sender retransmission of lost packet

HostA ;. original data fout
‘ = ,.: original data, plus N
data
Host B finite shared output

I link buffers

‘ ==
L =
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Causes/costs of congestion: scenario 2

0 always: A = A
in out ,
0 “perfect” retransmission only when loss: )" > ),

(goodput)

in " out,,
0 retransmission of delayed (not lost) packet makes xin larger
(than perfect case) for same kout

S ¥ oo
a. b. c.
“costs" of congestion:
0 more work (retrans) for given “"goodput”
0 unneeded refransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3

0 four senders Q: what happens as i,

0 multihop paths and A’ increase ?
O timeout/retransmit in

HostA Ao
X, original data o

'+ original data, plus
retransmitted data

finite shared output
lipk buffers,

Host B -

N
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Causes/costs of congestion: scenario 3

C/2

=]
[s]
<

I
Ain
Another "cost” of congestion:

0 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

0 no explicit feedback from [ routers provide feedback
network to end systems

| congestion inferred from 0 single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

0 approach taken by TCP ATM)

0 explicit rate sender
should send at
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Case study: ATM ABR congestion control

ABR: available bit rate: RM (resource management)
0 “elastic service" cells:
0 if sender’s path 0 sent by sender, interspersed
“underloaded": with data cells
o sender should use O bits in RM cell set by switches
available bandwidth (“network-assisted”)
0 if sender's path 0 NI bit: no increase in rate
congested: (mild congestion)
0 sender throttled to 0 CI bit: congestion
minimum guaranteed indication
rate 0 RM cells returned to sender by

receiver, with bits intact
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Case study: ATM ABR congestion control

I M cells
source D data cells destinatior

Switch Switch

Al A
15 =
L 25 X ,
=11 1 i
0 two-byte ER (explicit rate) field in RM cell
0 congested switch may lower ER value in cell
0 sender’ send rate thus minimum supportable rate on path

0 EFCI bit in data cells: set to 1 in congested switch

0 if data cell preceding RM cell has EFCI set, sender sets CT
bit in returned RM cell
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0 3.7 TCP congestion
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TCP Congestion Control

[}

end-end control (no network

assistance)

sender limits transmission:

LastByteSent-LastByteAcked
< CongWin

o

o

Roughly,

rate = CongWin

RTT Bytes/sec

o

CongWin is dynamic, function
of perceived network
congestion

How does sender

perceive congestion?
O loss event = timeout or
3 duplicate acks
0 TCP sender reduces
rate (CongWin) after
loss event
three mechanisms:
o AIMD
0 slow start
0 conservative after
timeout events
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TCP ATMD

multiplicative decrease:

additive increase:

cut CongWin in half
after loss event

congestion
window

24 Kbytes
16 Kbytes

8 Kbytes

increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Long-lived TCP connection
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TCP Slow Start

0 When connection begins, .

CongWin = 1 MSS
0 Example: MSS = 500
bytes & RTT = 200 msec
0 initial rate = 20 kbps
O available bandwidth may
be >> MSS/RTT

0 desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate

exponentially fast until
first loss event
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TCP Slow Start (more)

0 When connection
begins, increase rate
exponentially until
first loss event:

0 double CongWin every
RTT

o done by incrementing
CongWin for every ACK
received

0 Summary: initial rate
is slow but ramps up
exponentially fast

@Hos? A Host B@
ngsﬂ\“

two seq ments

U segments

«—RTT—

time

Transport Layer 3-95

Refinement

0 After 3 dup ACKs:
0 CongWin is cut in half
0 window then grows
linearly
0 But after timeout event:
0 CongWin instead set to
1 Mss;
0 window then grows
exponentially
0 to a threshold, then
grows linearly

Philosophy:

* 3 dup ACKs indicates
network capable of
delivering some segments
* timeout before 3 dup
ACKs is "more alarming”
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Refinement (more)

Q: When should the
exponential
increase switch t
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
0 Variable Threshold

0 At loss event, Threshold is
set t0 1/2 of CongWin just
before loss event
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Summary: TCP Congestion Control

0 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

0 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.
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TCP sender congestion control

TCP throughput

Event State TCP Sender Action C y

ACK receipt | Slow Start | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | (SS) If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
ACK receipt | Congestion | CongWin = CongWin+MSS * Additive increase, resulting
for previously | Avoidance | (MSS/CongWin) in increase of CongWin by
unacked (CA) 1 MSS every RTT
data
Loss event SSorCA Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
Timeout SSorCA Threshold = CongWin/2, Enter slow start

CongWin = 1 MSS,

Set state to "Slow Start”
Duplicate SSorCA Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed
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O What's the average throughout ot TCP as a
function of window size and RTT?
1 Ignore slow start
U Let W be the window size when loss occurs.
O When window is W, throughput is W/RTT
0 Just after loss, window drops to W/2,
throughput to W/2RTT.
O Average throughout: .75 W/RTT
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Reliable Blast UDP

0 High bandwidth network, with loss
0 TCP might function poorly. Why?

O Possible solution: use UDP
0 NACK only missing frames

0 How can we know that the NACK arrived
(assuming lossy network?)
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TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

connection 2
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Why is TCP fair?

Two competing sessions:
0 Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput %

Connection 1 throughput R
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Fairness (more)

Fairness and UDP
O Multimedia apps often
do not use TCP

o do not want rate
throttled by congestion
control

0 Instead use UDP:

0 pump audio/video at
constant rate, tolerate
packet loss

0 Research area: TCP
friendly

Fairness and parallel TCP

connections

0 nothing prevents app from
opening parallel cnctions
between 2 hosts.

0 Web browsers do this

0 Example: link of rate R
supporting 9 cnctions;

0 new app asks for 1 TCP, gets
rate R/10

0 new app asks for 11 TCPs,
gets R/2|
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Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

0 TCP connection establishment

0 data transmission delay

0 slow start

Notation, assumptions:

Assume one link between

client and server of rate R

0 S: MSS (bits)

0 O: object size (bits)

0 ho retransmissions (no loss,
no corruption)

Window size:

0 First assume: fixed
congestion window, W
segments

I Then dynamic window,
modeling slow start
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Fixed congestion window (1)

WS/R > RTT + S/R: ACK fc
first segment in window
returns before window's
worth of data sent

delay = 2RTT + O/R_|

Transport Layer 3-106

TCP Delay Modeling: Slow Start (1)

Fixed congestion window (2)

Now suppose window grows according to slow start

Second case:

0 WS/R<RTT + S/R: wait
for ACK after sending
window's worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]
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Will show that the delay for one object is:

Latency = 2RTT +Q+P[RTT +§} " -ps
R R R

where Pis the number of times TCP idles at server:

P=min{Q,K -1}

- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.
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TCP Delay Modeling: Slow Start (2)
Delay components: e e

* 2 RTT for connection —
estab and request request
+ O/R to transmit ovlect

: first window
object TSR
- time server idles due second window
to slow start I =R
Server idles:

P = min{K-1,Q} times

third window
=48R

Example: fouthaindow
- 0/S =15 segments

+ K= 4 windows

‘Q=2

<P =min{kK-1Q} = 2 objoct

delivered

Server idles P=2 times time at

AN complete

transmission

server
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TCP Delay Modeling (3)

S .
E + RTT = time from when server starts to send segment

until server receives acknowledgement

initate TCP
connection
—

request
object

a8 . . .
2 & = time to transmit the kth window

4 frstwindow
=SR

N ST . RIT
2 +RTT -2 zl = idle time after the kth window ~+

second windon]
=25R

third window
=4SR

»
delay = % +2RTT + Y idleTime, oo

=

»
_O orrTe [£+RTT—2*"£]
R “'R R ; "\ compie
Object transmission
daivared
=9+2RTT+P[RTT+§]—(2”-1)§ time at
R 2 I o
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TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+--+2""'S>0}
=min{k:2° +2' +---+2" >0/}
0

=min{k:2"—12§}
. [
=min{k: k> logz(EH)}
o
:’Vk;gz(EH)“

Calculation of Q, humber of idles for infinite-size object,
is similar (see HW).
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HTTP Modeling

0 Assume Web page consists of:
0 Ibase HTML page (of size Obits)
0 Mimages (each of size Obits)
0 Non-persistent HTTP:
0 M+ITCP connections in series
0 Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
O Persistent HTTP:
0 2 RTT o request and receive base HTML file
0 1RTTto request and receive M images
0 Response time = (M+1)O/R + 3RTT + sum of idle times
0 Non-persistent HTTP with X parallel connections
Suppose M/X integer.
1 TCP connection for base file
M/X sets of parallel connections for images.
Response time = (M+1)O/R + (M/X + 1)ZRTT + sum of idle times

o
o
o
o
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HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

20
18
16
14
B non-persi
12 non-persistent
10
3 M persistent
6
4 [ parallel non-
ersistent
2
0

28 100 1 10
Kbps Kbps Mbps Mbps
For low bandwidth, connection & response time dominated by
transmission time.

Persistent connections only give minor improvement over parallel
connections.
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HTTP Response time (in seconds)
RTT =1sec, O = 5 Kbytes, M=10 and X=5

70

60

50

[ non-persistent

40

30 M persistent

20 O parallel non-
10 persistent

28 100 1 10
Kbps Kbps Mbps Mbps
For larger RTT, response time dominated by TCP establishment

& slow start delays. Persistent connections now give important
improvement: particularly in high delaysbandwidth networks.
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Chapter 3: Summary

0 principles behind transport
layer services:
0 multiplexing,
demultiplexing
0 reliable data transfer

| flow control Next:
0 congestion control 0 leaving the network
0 instantiation and “edge” (application,
implementation in the transport layers)
Internet O into the network
o UDP “core”
1 TCP
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