Chapter 3
Transport Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They're in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a ot of work on our part. In return for use, we only ask the

Computer Networking:
A Top Down Approach

following: Featuring the Internet,
O If you use these slides (e.g., in a class) in substantially unaltered form, 3rd edition.

that you mention their source (after all, we'd like people to use our book!) . .

0 If you post any slides in substantially unaltered form on a www site, that Jim Kurose, Keith Ross
you note that they are adapted from (or perhaps identical to) our slides, and Addison-Wesley, July
note our copyright of this material .

2004.

Thanks and enjoy! JFKIKWR

All material copyright 1996-2004
J.F Kurose and K.W. Ross, All Rights Reserved
Transport Layer ~ 3-1

Chapter 3: Transport Layer

Our goals:
0 understand principles O learn about fransport
behind transport layer protocols in the

layer services: Internet:

0 multiplexing/demultipl 0 UDP: connectionless
exing transport

0 reliable data transfer 0 TCP: connection-oriented

0 flow control fransport

0 congestion control o TCP congestion control

Transport Layer 3-2

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and 0 segment structure
demultiplexing 0 reliable data fransfer

0 3.3 Principles of o flow control
reliable data transfer 0 connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

0 3.4 Connectionless
transport: UDP

Transport Layer 3-3

Transport services and protocols

0 provide /ogical communication

between app processes Fr
running on different hosts R

0 transport protocols run in
end systems
0 send side: breaks app
messages into segments, 1)
passes to network layer E !
0 rev side: reassembles

&
N’
{ data link |

segments into messages, i
passes to app layer =

0 more than one transport

protocol available to apps
0 Internet: TCP and UDP

Transport Layer 3-4

Transport vs. network layer

0 network layer: logical Household analogy:
communication 12 kids sending letters
between hosts to 12 kids

0 transport layer: logical O processes = kids

communication 0 app messages = letters
between processes in envelopes

0 relies on, enhances,

: 0 hosts = houses
network layer services

O fransport protocol =
Ann and Bill

0 network-layer protocol
= postal service

Transport Layer 3-5

Internet transport-layer protocols

0 reliable, in-order
delivery (TCP)

0 congestion control 3 =t
o flow control
=
0 connection setup %
. { data link |
0 unreliable, unordered i 3
delivery: UDP
0 extension of "best- -
effort" IP %
. . Pretuork |
0 services hot available:

0 delay guarantees

0 bandwidth guarantees

Transport Layer 3-6

Chapter 3 outline

[m}

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

O

O

[m]

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-7

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

Q = process

[=socket

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with|
header (later used for
demultiplexing)

P1D application (P2 @M
transport transport fransport
network network network
link link link
physical physical physical

host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

0 host receives IP datagrams
0 each datagram has source
IP address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)
O host uses IP addresses & port
numbers to direct segment to
appropriate socket

[m}

m]

32 bits

source port #l dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

0 Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (33111) ;

DatagramSocket mySocket2 = new
DatagramSocket (33222) ;

O UDP socket identified by
two-tuple:
(dest IP address, dest port number)

0 When host receives UDP
segment:
0 checks destination port
number in segment
o directs UDP segment to
socket with that port
number
0 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157
client DP: 6428

server

SP: 5775
DP: 6428 Client

IP:A IP: C IP:B

SP provides “return address”

Transport Layer 3-11

Connection-oriented demux

0 TCP socket identified
by 4-tuple:
0 source IP address
0 source port number
0 dest IP address
o dest port number
0 recv host uses all four
values to direct
segment to appropriate
socket

0 Server host may support

many simultaneous TCP
sockets:

0 each socket identified by
its own 4-tuple

0 Web servers have

different sockets for
each connecting client
0 non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client DP: §0 server DP: §0 Clignf
IP: A S-IP: A P: C s-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-13

Connection-oriented demux:
Threaded Web Server

WDl == B
SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client | 0P80 server DP:80 | Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-14

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Principles of
reliable data transfer

0 3.4 Connectionless
transport: UDP

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-15

Principles of Reliable data transfer

O important in app., transport, link layers
O top-10 list of important networking topics!

8g
a =
Q
L8]
o A '
- (Feiabie channe rdt_send() Eoolldaliver data(}
95 relicble dota reliable data
&5 transter pratocal fransfer protocal
5 [+] (zending side) (receiving side)

uar_sena 0} L=z trae revor

Junrelicble channel J

(b) service implernentation

(a) provided service

characteristics of unreliable channel will determine
complexity of reliable data ftransfer protocol (rdt)

O

Transport Layer 3-16

Reliable data transfer: getting started

rdt_send() : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver_data() : called by
rdt to deliver data to upper

\ rdt_send() | [daia]
send [reliable data
. transfer protocol
side |sencing side]

udt_send()I @

[data | [deliver datal(]

relioble data receive
transfer protocol ;
receiving side side

Irdt_rcv 9]

/ Ll iunrelmble channel j:

udt_send() : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-17

Reliable data transfer: getting started

we'll:
0 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
0 consider only unidirectional data transfer
0 but control info will flow on both directions!
0 use finite state machines (FSM) to specify

sender, receiver
event causing state fransition

actions taken on state transition

event @
actions)

Transport Layer 3-18

state: when in this
“state” next state
uniquely determined
by next event

Rd11.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
0 ho bit errors
0 no loss of packets
0 separate FSMs for sender, receiver:
0 sender sends data into underlying channel
0 receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-19

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
0 checksum to detect bit errors
0 the question: how to recover from errors:

0 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

0 negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

0 sender refransmits pkt on receipt of NAK
0 new mechanisms in rdt2.0 (beyond rdt1.0):
0 error detection
0 receiver feedback: control msgs (ACK NAK) rcvr->sender

Transport Layer 3-20

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

receiver
rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
—_— rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rovpkt) && isACK(rcvpkt)

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-21

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d kt,

rdt_rcv(rcvpkt) &&
iSNAK(rcvpkt)

—_— rdt_rcv(rcvpkt) &&
dt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Wait for
call from
below,

hrdt_rev(revpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-22

rdt2.0: error scenario (no loss!)

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

rdt_rcv rcvekx &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-23

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? | sender adds seguence
0 sender doesn't know what number to each pkt
happened at receiver! 0 sender retransmits current
O can't just retransmit: pkt if ACK/NAK garbled
possible duplicate O receiver discards (doesn't
deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Transport Layer 3-24

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

Wait for
call 0 frol
above,
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rev(rcvpkt)
&& notcorrupt(rcvpkt)
&8 isACK(rcvpkt)

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rev(rovpkt) && notcorrupt(rovpkt)
&8& has_seq0(rcvpkt)

extract(rovpkt,data)
deliver_data(data)
V sndpkt = make_pkt(ACK, chksum)
\\ udt_send(sndpkt)
rdt_rcv(rovpkt) && (corrupt(revpkt) \ rdt_rcv(revpkt) && (corrupt(revpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
y

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (not corrupt(rcvpkt) &&
has_seq1(rcvpkt) has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)
(sndpkY) rdlt_rcv(rovpkt) && notcorrupt(revpkt) Ud-send(sndek)

8&& has_seq1(rcvpkt)

rdt_rcv(rcvpkt) &&

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-26

A A

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK (rovpkt)) rdt_send(data)

udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

- udt_send(sndpkt)
Transport Layer 3-25
rdt2.1: discussion
Sender: Receiver:
0 seq # added to pkt 0 must check if received
0 two seq. #'s (0,1) will packet is duplicate
suffice. Why? 0 state indicates whether

O or1is expected pkt

0 must check if received seq #

AC.K/NAK corrupted O note: receiver can not
0 twice as many states know if its last

o state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1seq. # af sender

Transport Layer 3-27

rdt2.2: a NAK-free protocol

0 same functionality as rdt2.1, using ACKs only

O instead of NAK, receiver sends ACK for last pkt
received OK
0 receiver must explicitly include seq # of pkt being ACKed

0 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-28

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,1))
udt_send(sndpkt)

sender FSM
fragment rdt_rcv(rcvpkt)
&& notcorrupt(revpkt)
rdt_rov(rovpkt) 8& 88 isACK(revpkt,0)
(corrupt(revpkt) || A
__has_seqi(rcvpkt)) receiver FSM
udt_send(sndpkt) fragment
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-29

rdt3.0: channels with errors andloss

New assumption: Approach: sender waits

underlying channel can “reasonable” amount of

also lose packets (data time for ACK

or ACKs) 0 retransmits if no ACK

0 checksum, seq. #, ACKs, received in this time
retransmissions will be 0 if pkt (or ACK) just delayed
of help, but not enough (not lost):

0 retransmission will be
duplicate, but use of seq.
#'s already handles this

0 receiver must specify seq
of pkt being ACKed

0 requires countdown timer

Transport Layer 3-30

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(revpkt) ||

\ udtﬁse‘nd(sndpkt) isACK(rcvpkt, 1))
rdt_rcv(rcvpkt) \ start_timer A
A
V\‘/‘agf'l’f timeout
call Oirom udt_send(sndpkt)
start_timer

rdt_rcv(revpkt)
&& notcorrupt(rcvpkt;
8&& isACK(rcvpkt, 1)
stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
stop_timer

timeout b

call 1 from
adtsendmapkt) above
start_timer (J

rdt_rcv(revpkt)
A

rdt_send(data)

rdt_rcv(revpkt) &&

(corrupt(revpkt) || sndpkt = make_pkt(1, data, checksum)
iSACK(rcvpkt,0)) udt_send(sndpkt)
_/\ start_timer

Transport Layer 3-31

rdt3.0 in action

sender recaiver
sender receiver R

sanct pkiD “'_\“ e send pi0 H“""-—-___. fev pid0
e and ACKD MK send ACKC
o ACHD / Tov ACKD
o AL send pkil
send pkl1 okt . * 0

— o pidl
! sand ACK]

FowACK]

send pki0 ot
N 1cv pkil
> send ACKD

(o) operation with no loss

ot .
g pid
e ‘_-“H"““b fev pikt]

send ACK]

v pidd
sand ACKD

[B) lost packet

Transport Layer 3-32

rdt3.0 in action

Tev pidl
send ACKD

timeout
sesend pitl

""‘"—'-—-..._______"cv phtl

EVACK]
sand pi0

() lost ACK (d) premature timeout

Transport Layer 3-33

Performance of rdt3.0

0 rdt3.0 works, but performance stinks
0 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T _ L (packet length in bits) _ 8kb/pkt
fransmit ™ R'(transmission rate, bps) = 10**9 b/sec

U _ L/R 008
sender prTLL /R "~ 30008

= 8 microsec

= 0.00027

0 U gengert Utilization - fraction of time sender busy sending
0 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
0 network protocol limits use of physical resources!

Transport Layer 3-34

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fwz-------------ceeemmeeeeeeae
last packet bit transmitted, t =L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send nex
packet, t=RTT +L/R

U - L/R 008 00027
sender poT . L/R 30008

Transport Layer 3-35

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
0 range of sequence numbers must be increased
0 buffering at sender and/or receiver

o shop-ond- n

0 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-36

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —o------------------oomeeee]
last bit transmitted, t =L /R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 39 packet arrives, send ACK

Increase utilization
/by a factor of 3!
‘

U = =
sender prT, /R 30.008

Transport Layer 3-37

Go-Back-N

Sender:
0 k-bit seq # in pkt header
0 “window" of up to N, consecutive unack'ed pkts allowed

send_base nexfseqnum dready usable, nol
ack'ed yat sent

r v
sent, not
""" """HHH[”][”] yet ack'ed [| not usable
| -

window size —4
N

0 ACK(n): ACKs all pkts up to, including seq # n - “"cumulative ACK"
0 may deceive duplicate ACKs (see receiver)

0 timer for each in-flight pkt

0 timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-38

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
ndpkt[r = make_ ,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum-++
}
A else
refuse_data(data
base=1 —_data()

nextseqnum=1

rdt_rcv(rcvpkt)

O timeout
» —_—
start_timer
3 udt_send(sndpkt[base])
C udt_send(sndpkilbase+1])
0O

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
S~a - && notcurrupt(rcvpkt)
A ~-—_ && hasseqnum(revpkt,expectedsegnum)
expectedseqnum=1 > Qextract(rcvpkl,data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) ~ sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
0 may generate duplicate ACKs
0 need only remember expectedseqnum
0 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
0 Re-ACK pkt with highest in-order seq #

Transport Layer 3-40

&& corrupt(revpkt
—_— udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer Transport Layer 3-39
H sender receiver
GBN in — E—
— send pki0 ‘\\.
row pkid
m send pktl send ACKD
rev phil
sendpki2 —_ (1gss send ACKI
send pkitd
(wait) rov pkid, discare
¥ send ACK
rev ACKO
send pktd
rev ACKT rcv pidd, discard
send pki5 -\\"—\-‘. send ACK]
rev pkis, discard
Pt 2 timeout Song ACKI

send pki2 _\‘.
send pkid rov pki2, deliver

send pkid \‘ send "‘?ﬁ)
send pkis rov pktd, deliver
\ send ACK3

Transport Layer 3-41

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts
0 buffers pkts, as needed, for eventual in-order delivery
to upper layer
0 sender only resends pkts for which ACK not
received
0 sender timer for each unACKed pkt
0 sender window
o N consecutive seq #'s
0 again limits seq #s of sent, unACKed pkts

Transport Layer 3-42

Selective repeat: sender, receiver windows

send base nexfsegnum

already usable, not
r v ack'ed yet sent
sent, not
0000 RUCHTHTIUIOONONND | seviastea [roreseme
t_ whdowsize—4
]

' (a) sender view of sequence numbers

i

i out of order

i acceptable
(buffered) but ihin window”
already ack’ed (withiin wi 3

s‘ I
J00ODDT0DIRNETENIENITINOOD mostmmanet roreseee
yet received

t_ indow size—4
N
rev_base
{b) receiver view of sequence numbers
Transport Layer 3-43

Selective repeat

—sender——— —receiver
data from above : pkf N in [revbase, revbase+N-1]
0 if next available seq # in 0 send ACK(n)
window, send pkt 0 out-of-order: buffer
timeout(n): 0 in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkf nin [revbase-N, revbase-1]

0 resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
0 mark pkt n as received

0 if n smallest unACKed pkt,

advance window base to . ACK("')
next unACKed seq # otherwise:
0 ighore

Transport Layer 3-44

Selective repeat in action

pktD sent

01 230456 788 T b i rova, delivered, AGHD semt

pktl sent oftz34]s673859
0123456789

pkt2 sent
[frz3laseres—m

X
tloss)

phtl

01[2345]67389

. ACKL sent

pkt3 sent, window full

[br1eslaseres

pkt3 rovd, Iuffered. ACK3 sent

o1[z345[6789

ACKO rovd, pktd sent
oftz234seras

ACKL ¥ pktS sent

o123asgleres

pkt2 TIMEOUT. pkt? resent

oif23ssglevras

pktd rovd, buffered, ACK{ sent
0123456789
pktS rovd, buffered, ACKS sent

o1fz345l6e789

pktZ rovd, pkt2,pktd, phtd.phkts
delivered, ACK2 sent

012345 789)

ACK3 rovd. nothing sent

oifzsaslersa

Selective repeat: (Sl ety
i o0 2
dilemma o T

Example:
0 seq#s:0,1,2,3

. . i FRCEVE pACKEL
0 window size=3 "

th seq number 0

0 receiver sees no
difference in two
scenarios!

O incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size? (b)

Transport Layer 3-46

rtLayer 3-45
Chapter 3 outline
0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP
0 3.2 Multiplexing and 0 segment structure

reliable data transfer

demultiplexing o
o flow control
a

3.3 Principles of reliable '
data transfer connection management
0 3.4 Connectionless 036 Prm{:nples of
transport: UDP congestion control
0 3.7 TCP congestion
control

Transport Layer 3-47

UDP: User Datagram Protocol [RFC 768]

0 “no frills," “bare bones”
Internet transport Why is there a UDP?
fr°T°C°I N 0 no connection
| "best effort” service, UDP establishment (which can
segments may be: add delay)
7 lost 0 simple: no connection state
0 delivered out of order at sender, receiver
to app 0 small segment header
O connectionless: 0 no congestion control: UDP
0 no handshaking between can blast away as fast as
UDP sender, receiver desired
0 each UDP segment

handled independently
of others

Transport Layer 3-48

UDP: more

0 often used for streaming

multimedia apps 32 bits
0 loss tolerant Length, in | Source port # dest port #
0 rate sensitive bytes of UDP [~ length checksum
segment
0 other UDP uses inf,":‘diné
o DNS header
0 SNMP
0 reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format

Transport Layer 3-49

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
0 treat segment contents 0 compute checksum of
as sequence of 16-bit received segment
integers 0 check if computed checksum

checksum: addition (1's equals checksum field value:
complement sum) of 0 NO - error detected
segment contents 0 YES - no error detected.
0 sender puts checksum But maybe errors

value into UDP checksum nonetheless? More later
field

Transport Layer 3-50

UDP Checksum Example

0 Using 1- complement (Simple XOR)

0 Example: with two 16-bit integers

1110011001100110
1101010101010101

00110011001 10011

checksum 1100110011001 100

Transport Layer 3-51

UDP Pseudo Header

0 Checksum includes IP fields as well

o 7 16]

Source IP Address

Destination IP Address

0 | Protocol | UDP Length

Transport Layer 3-52

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and 0 segment structure
demultiplexing 0 reliable data transfer

0 3.3 Connectionless o flow control
transport: UDP 0 connection management

0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

0 3.4 Principles of
reliable data transfer

Transport Layer 3-53

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

O point-to-point: O full duplex data:
0 one sender, one receiver 0 bi-directional data flow
O reliable, in-order byte in same connection
steam:] MSS: maximum segment
size
0 connection-oriented:

0 handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

 wua U sender will not
o0 overwhelm receiver

0 no “"message boundaries”
O pipelined:
0 TCP congestion and flow
control set window size

O send & receive buffers

TCP
receive buffer
O

Transport Layer 3-54

TCP segment structure

32 bits

URG: urgent data countin

(generally not used) source port # | dest port # by by‘regs
ACK: ACK # sequence number of data
valid —{—acknowledgement number (not segmentsl)
PSH: push data now ZMM’IBEE Receive window bytes
— | heekaun e
(generally not used) ch um Urg data pnfer rcvr?/willing
RST, SYN, FIN:— | OPW(S (variable length) to accept
connection estab

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-55

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
0 segment structure
o reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-56

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

0 initialize TCP variables:

0 seq. #s
o buffers, flow control
info (e.g. RevWindow)

0 client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;
0 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
0 specifies initial seq #
0 no data
Step 2: server host receives
SYN, replies with SYNACK
segment
o server allocates buffers
0 specifies server initial
seq. #
Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-57

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

Step 1 client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

@ client

close

ser‘ver‘@

FIN
oK
B close
/
e |

d wait

2 timel

Transport Layer 3-58

TCP Connection Management (cont.)

Step 3: client receives FIN,

@ client server@

replies with ACK. closing
o Enters “timed wait" - a
will respond with ACK
to received FINs / s
Step 4: server, receives /
ACK. Connection closed.
5 Ack
Note: with small g \
modification, can handle E closed
simultaneous FINSs. F
closed

Transport Layer 3-59

Connection Examples

Host 1 Host 2

[——SINSEQ . y)

Time

1
paxedl
I

50 g, ,

(a)

Host 1 Host 2
— S sEa .
gmgEO =T ——
et
L —

T ey
oM
“ S

W (i
WEy -
a.;

(b}

Transport Layer 3-60

TCP Connection Management (cont)

e e
a8 TEF cansacsen

e R
s
[rmmns | [e TCP server
i i lifecycle
e s i gt omice
TCP client
lifecycle | e
e AT
.
.
CLCRE_warT EYN_REVD

ESTADLRMED o

Transport Layer 3-61

Connection state machine

(Bt 2 T e Sy andshanel |
e | T
nove |- WP - AGH [y
(Datn irmrtor stute)

Y 26 [ewvanusren |—RELARIES

A
Wiy 3l fho 3wy Fnrgaastin)

cLOBEY® T

eLosEre LY e e

Acties cioss) [
b “| croswo

A =

|_Fana o acksce t
= Tmae
AT

i
L FRLALH
Timasminh

CLOBED |mnnns

130 back o ahart)

Transport Layer 3-62

TCP seq. #'s and ACKs
Seq. #'s: @ Host A Host B'@

0 byte stream
“number” of first User _ Seqey,
: . ACK=
byte in segment’s types W‘
data host ACKs
. , receipt of
ACKs: " so8=S— 'C, echoes
0 seq # of next byte Swﬂg,no = back 'C'
expected from
other side host ACKs
0 cumulative ACK receipt | Seqeys
) =43, Ack,
Q: how receiver handles °f 23.‘“" &‘
out-of-order segments
0 A: TCP spec doesn't

time
say, - up to .)
i simple telnet s
implementor imple telnet scenario 1

Transport Layer 3-63

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 SampleRTT: measured time from

0 longer than RTT segment transmission until ACK
0 but RTT varies receipt

0 too short: premature 0 ignore retransmissions

timeout [l SampleRTT will vary, want
O unnecessary estimated RTT “smoother”
retransmissions 0 average several recent

too long: slow reaction measurements, not just
to segment loss current SampleRTT

Transport Layer 3-64

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT
0 Exponential weighted moving average

0 influence of past sample decreases exponentially fast
0 typical value: @ =0.125

Transport Layer 3-65

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia eurecom.fr

R | 1 P
N o)

RTT (miliseconds)

1 8 15 2 20 3% 4 S 5 e 71 78 8 % % 106
time (seconnds)

[F+= SampleRTT —=—Estmated RTT

Transport Layer 3-66

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus "safety margin”
0 large variation in EstimatedRTT -> larger safety margin
0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-67

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented

transport: TCP

0 segment structure

o reliable data transfer

o flow control

0 connection management
0 3.6 Principles of

congestion control
0 3.7 TCP congestion

control

Transport Layer 3-68

TCP reliable data transfer

TCP creates rdt
service on top of IP's
unreliable service

Pipelined segments
0 Cumulative acks

TCP uses single
retransmission timer

[m]

0 Retransmissions are
triggered by:
0 timeout events
0 duplicate acks

0 Initially consider
simplified TCP sender:
0 ignore duplicate acks

0 ignore flow control,
congestion control

[m}

O

Transport Layer 3-69

TCP sender events:

data rcvd from app:

timeout:

0 Create segment with

seq #

seq # is byte-stream

number of first data

byte in segment

O start timer if not
already running (think
of timer as for oldest
unacked segment)

0 expiration interval:
TimeOutInterval

O

0 refransmit segment
that caused timeout

O restart timer

Ack revd:

0 If acknowledges
previously unacked
segments

0 update what is known to
be acked

0 start timer if there are
outstanding segments

Transport Layer 3-70

NextSeqNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) { _TCP
switch(event)
v , sender
event: data received from application above e —

create TCP segment with sequence number NextSeqNum ! sum[;hfled ’

if (timer currently not running)
start timer
pass segment to IP

Comment:
NextSeqNum = NextSeqNum + length(data) N CondRnc

+ SendBase-1: last

event: timer timeout cumulatively

retransmit not-yet-acknowledged segment with ack'ed byte
smallest sequence number M
start timer + SendBase-1=71;
y=73, so the revr
event: ACK received, with ACK field value of y wants 73+ ;
if (y > SendBase) { y> SendBase, so
SendBase =y i}
if (there are currently not-yet-acknowledged segments) *hﬁ*dnew data is
start timer acke

}

} /* end of loop forever */

Transport Layer 3-71

‘W
SendBase

TCP: retransmission scenarios

Brost 4 Host e

Seq=,
9292 8 by daty
-A00
‘y

loss

+~— timeout——

S

eg=g,
2.8 bytes datg

=100

time .
lost ACK scenario

92 timeout—sy

Sendbase
=100
SendBase
=120

92 timeout—s+— Seq

eq=!

SendB K
endBase
=120 i

time

Transport Layer 3-72

premature timeout

TCP retransmission scenarios (more)

B st 4 Host B @

Segsg;
2, 8bytes dats

A0
Seq=199, 2 PO

% S datg
loss
ACK;m\

time
Cumulative ACK scenario

SendBase
=120

+~———— timeout——

Transport Layer 3-73

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-74

Fast Retransmit

0 Time-out period often
relatively long:
0 long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

0 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

0 fast retransmit: resend

Fast retransmit algorithm:

if (y > SendBase) {
SendBase =y

start timer

}

else {

event: ACK received, with ACK field value of y

if (there are currently not-yet-acknowledged segments)

0 Sender often sends segment before fimer
many segments back-to- expires
back
0 If segment is lost,
there will likely be many
duplicate ACKs.

Transport Layer 3-75

increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-76

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and 0 segment structure
demultiplexing 0 reliable data transfer

0 3.3 Connectionless o flow control
transport: UDP 0 connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Transport Layer 3-77

TCP Flow Control

flow control

. . sender won't overflow
0 receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

b— RevWindow —a

0 speed-matching

data from T application . 7
u- spare room i service: matching the
send rate to the
;. RevBuffe « receiving app's drain

rate
0 app process may be

slow at reading from
buffer

Transport Layer 3-78

TCP Flow control: how it works

— RevWindow —&

0 Rcvr advertises spare

datn from i iicaion 1OOM by including value
'

* process

in baffer
* RevBuffer
(Suppose TCP receiver
discards out-of-order
segments)

0 spare room in buffer
RcviWindow

LastByteRead]

of RevWindow in
segments

O Sender limits unACKed
data to RevWindow

0 guarantees receive
buffer doesn't overflow

RcvBuffer-[LastByteRcvd -

Transport Layer 3-79

Flow control

0 What happens if RecvWinSize = 0?
1 Silly Window Syndrom

0 What happens if RecvWinSize = 64K is too
small (lines with high bandwidth and high

latency?)
RFC 1323 Window scale option

0 Nagle's algorithm

Transport Layer 3-80

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-81

Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much
data too fast for network to handle”
0 different from flow controll
O manifestations:
0 lost packets (buffer overflow at routers)
I long delays (queueing in router buffers)
0 a top-10 problem!

Transport Layer 3-82

Causes/costs of congestion: scenario 1

O two senders, two
receivers

0 one router,
infinite buffers

HostA 2
hin original data out

3

S

output link buffers

-

0 no retransmission

0 large delays

ci2 — -
- i 3 when congested
] i o i .
< ; 0 maximum
! . achievable
c/2 ci2 throughput
1'f\ 1'In

Transport Layer 3-83

Causes/costs of congestion: scenario 2

0 one router, finite buffers
0 sender retransmission of lost packet

HostA ;. original data fout
‘ = ,.: original data, plus N
data
Host B finite shared output

I link buffers

‘ ==
L =

Transport Layer 3-84

Causes/costs of congestion: scenario 2

0 always: A = A
in out ,
0 “perfect” retransmission only when loss:)" >),

(goodput)

in " out,,
0 retransmission of delayed (not lost) packet makes xin larger
(than perfect case) for same kout

S ¥ oo
a. b. c.
“costs" of congestion:
0 more work (retrans) for given “"goodput”
0 unneeded refransmissions: link carries multiple copies of pkt
Transport Layer 3-85

Causes/costs of congestion: scenario 3

0 four senders Q: what happens as i,

0 multihop paths and A’ increase ?
O timeout/retransmit in

HostA Ao
X, original data o

'+ original data, plus
retransmitted data

finite shared output
lipk buffers,

Host B -

N

Transport Layer 3-86

Causes/costs of congestion: scenario 3

C/2

=]
[s]
<

I
Ain
Another "cost” of congestion:

0 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-87

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

0 no explicit feedback from [routers provide feedback
network to end systems

| congestion inferred from 0 single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

0 approach taken by TCP ATM)

0 explicit rate sender
should send at

Transport Layer 3-88

Case study: ATM ABR congestion control

ABR: available bit rate: RM (resource management)
0 “elastic service" cells:
0 if sender’s path 0 sent by sender, interspersed
“underloaded": with data cells
o sender should use O bits in RM cell set by switches
available bandwidth (“network-assisted”)
0 if sender's path 0 NI bit: no increase in rate
congested: (mild congestion)
0 sender throttled to 0 CI bit: congestion
minimum guaranteed indication
rate 0 RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-89

Case study: ATM ABR congestion control

I M cells
source D data cells destinatior

Switch Switch

Al A
15 =
L 25 X ,
=11 1 i
0 two-byte ER (explicit rate) field in RM cell
0 congested switch may lower ER value in cell
0 sender’ send rate thus minimum supportable rate on path

0 EFCI bit in data cells: set to 1 in congested switch

0 if data cell preceding RM cell has EFCI set, sender sets CT
bit in returned RM cell

Transport Layer 3-90

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
0 segment structure
0 reliable data transfer
o flow control
0 connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer 3-91

TCP Congestion Control

[}

end-end control (no network

assistance)

sender limits transmission:

LastByteSent-LastByteAcked
< CongWin

o

o

Roughly,

rate = CongWin

RTT Bytes/sec

o

CongWin is dynamic, function
of perceived network
congestion

How does sender

perceive congestion?
O loss event = timeout or
3 duplicate acks
0 TCP sender reduces
rate (CongWin) after
loss event
three mechanisms:
o AIMD
0 slow start
0 conservative after
timeout events

Transport Layer 3-92

TCP ATMD

multiplicative decrease:

additive increase:

cut CongWin in half
after loss event

congestion
window

24 Kbytes
16 Kbytes

8 Kbytes

increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Long-lived TCP connection

Transport Layer 3-93

TCP Slow Start

0 When connection begins, .

CongWin = 1 MSS
0 Example: MSS = 500
bytes & RTT = 200 msec
0 initial rate = 20 kbps
O available bandwidth may
be >> MSS/RTT

0 desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate

exponentially fast until
first loss event

Transport Layer 3-94

TCP Slow Start (more)

0 When connection
begins, increase rate
exponentially until
first loss event:

0 double CongWin every
RTT

o done by incrementing
CongWin for every ACK
received

0 Summary: initial rate
is slow but ramps up
exponentially fast

@Hos? A Host B@
ngsﬂ\“

two seq ments

U segments

«—RTT—

time

Transport Layer 3-95

Refinement

0 After 3 dup ACKs:
0 CongWin is cut in half
0 window then grows
linearly
0 But after timeout event:
0 CongWin instead set to
1 Mss;
0 window then grows
exponentially
0 to a threshold, then
grows linearly

Philosophy:

* 3 dup ACKs indicates
network capable of
delivering some segments
* timeout before 3 dup
ACKs is "more alarming”

Transport Layer 3-96

Refinement (more)

Q: When should the
exponential
increase switch t
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
0 Variable Threshold

0 At loss event, Threshold is
set t0 1/2 of CongWin just
before loss event

Transport Layer 3-97

Summary: TCP Congestion Control

0 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

0 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-98

TCP sender congestion control

TCP throughput

Event State TCP Sender Action C y

ACK receipt | Slow Start | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | (SS) If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
ACK receipt | Congestion | CongWin = CongWin+MSS * Additive increase, resulting
for previously | Avoidance | (MSS/CongWin) in increase of CongWin by
unacked (CA) 1 MSS every RTT
data
Loss event SSorCA Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
Timeout SSorCA Threshold = CongWin/2, Enter slow start

CongWin = 1 MSS,

Set state to "Slow Start”
Duplicate SSorCA Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-99

O What's the average throughout ot TCP as a
function of window size and RTT?
1 Ignore slow start
U Let W be the window size when loss occurs.
O When window is W, throughput is W/RTT
0 Just after loss, window drops to W/2,
throughput to W/2RTT.
O Average throughout: .75 W/RTT

Transport Layer 3-100

Reliable Blast UDP

0 High bandwidth network, with loss
0 TCP might function poorly. Why?

O Possible solution: use UDP
0 NACK only missing frames

0 How can we know that the NACK arrived
(assuming lossy network?)

Transport Layer 3-101

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

connection 2

Transport Layer 3-102

Why is TCP fair?

Two competing sessions:
0 Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput %

Connection 1 throughput R

Transport Layer 3-103

Fairness (more)

Fairness and UDP
O Multimedia apps often
do not use TCP

o do not want rate
throttled by congestion
control

0 Instead use UDP:

0 pump audio/video at
constant rate, tolerate
packet loss

0 Research area: TCP
friendly

Fairness and parallel TCP

connections

0 nothing prevents app from
opening parallel cnctions
between 2 hosts.

0 Web browsers do this

0 Example: link of rate R
supporting 9 cnctions;

0 new app asks for 1 TCP, gets
rate R/10

0 new app asks for 11 TCPs,
gets R/2|

Transport Layer 3-104

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

0 TCP connection establishment

0 data transmission delay

0 slow start

Notation, assumptions:

Assume one link between

client and server of rate R

0 S: MSS (bits)

0 O: object size (bits)

0 ho retransmissions (no loss,
no corruption)

Window size:

0 First assume: fixed
congestion window, W
segments

I Then dynamic window,
modeling slow start

Transport Layer 3-105

Fixed congestion window (1)

WS/R > RTT + S/R: ACK fc
first segment in window
returns before window's
worth of data sent

delay = 2RTT + O/R_|

Transport Layer 3-106

TCP Delay Modeling: Slow Start (1)

Fixed congestion window (2)

Now suppose window grows according to slow start

Second case:

0 WS/R<RTT + S/R: wait
for ACK after sending
window's worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

Transport Layer 3-107

Will show that the delay for one object is:

Latency = 2RTT +Q+P[RTT +§} " -ps
R R R

where Pis the number of times TCP idles at server:

P=min{Q,K -1}

- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.

Transport Layer 3-108

TCP Delay Modeling: Slow Start (2)
Delay components: e e

* 2 RTT for connection —
estab and request request
+ O/R to transmit ovlect

: first window
object TSR
- time server idles due second window
to slow start I =R
Server idles:

P = min{K-1,Q} times

third window
=48R

Example: fouthaindow
- 0/S =15 segments

+ K= 4 windows

‘Q=2

<P =min{kK-1Q} = 2 objoct

delivered

Server idles P=2 times time at

AN complete

transmission

server

Transport Layer 3-109

TCP Delay Modeling (3)

S .
E + RTT = time from when server starts to send segment

until server receives acknowledgement

initate TCP
connection
—

request
object

a8 . . .
2 & = time to transmit the kth window

4 frstwindow
=SR

N ST . RIT
2 +RTT -2 zl = idle time after the kth window ~+

second windon]
=25R

third window
=4SR

»
delay = % +2RTT + Y idleTime, oo

=

»
_O orrTe [£+RTT—2*"£]
R “'R R ; "\ compie
Object transmission
daivared
=9+2RTT+P[RTT+§]—(2”-1)§ time at
R 2 I o

Transport Layer 3-110

TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+--+2""'S>0}
=min{k:2° +2' +---+2" >0/}
0

=min{k:2"—12§}
. [
=min{k: k> logz(EH)}
o
:’Vk;gz(EH)“

Calculation of Q, humber of idles for infinite-size object,
is similar (see HW).

Transport Layer 3-111

HTTP Modeling

0 Assume Web page consists of:
0 Ibase HTML page (of size Obits)
0 Mimages (each of size Obits)
0 Non-persistent HTTP:
0 M+ITCP connections in series
0 Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
O Persistent HTTP:
0 2 RTT o request and receive base HTML file
0 1RTTto request and receive M images
0 Response time = (M+1)O/R + 3RTT + sum of idle times
0 Non-persistent HTTP with X parallel connections
Suppose M/X integer.
1 TCP connection for base file
M/X sets of parallel connections for images.
Response time = (M+1)O/R + (M/X + 1)ZRTT + sum of idle times

o
o
o
o

Transport Layer 3-112

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

20
18
16
14
B non-persi
12 non-persistent
10
3 M persistent
6
4 [parallel non-
ersistent
2
0

28 100 1 10
Kbps Kbps Mbps Mbps
For low bandwidth, connection & response time dominated by
transmission time.

Persistent connections only give minor improvement over parallel
connections.
Transport Layer 3-113

HTTP Response time (in seconds)
RTT =1sec, O = 5 Kbytes, M=10 and X=5

70

60

50

[non-persistent

40

30 M persistent

20 O parallel non-
10 persistent

28 100 1 10
Kbps Kbps Mbps Mbps
For larger RTT, response time dominated by TCP establishment

& slow start delays. Persistent connections now give important
improvement: particularly in high delaysbandwidth networks.

Transport Layer 3-114

Chapter 3: Summary

0 principles behind transport
layer services:
0 multiplexing,
demultiplexing
0 reliable data transfer

| flow control Next:
0 congestion control 0 leaving the network
0 instantiation and “edge” (application,
implementation in the transport layers)
Internet O into the network
o UDP “core”
1 TCP

Transport Layer 3-115

