Chapter 2 (continued)
Application Layer -
part 2

A note on the use of these ppt slides:
We're making these slides freely available to all (faculty, students, readers).

They're in PowerPoint form so you can add, modify, and delete slides Computer Networking:
(including this one) and slide content to suit your needs. They obviously

A Top Down Approach
represent a fot of work on our part. In return for use, we only ask the ,
following: Featuring the Internet,
0O If you use these slides (e.g., in a class) in substantially unaltered form, 3rd edition.
that you mention their source (after all, we'd like people to use our book!)
0 If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material

Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

Thanks and enjoy! JFKIKWR

All material copyright 1996-2004
J.F Kurose and KW. Ross, All Rights Reserved -
2: Application Layer 1

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
0 app architectures with TCP
o app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP
0 2.4 Electronic Mail 0 2.9 Building a Web
o SMTP, POP3, IMAP server
0 2.5 DNS

2: Application Layer 2

P2P file sharing

0 Alice chooses one of
Example the peers, Bob.
0 Alice runs P2P client O File is copied from

P2P: centralized directory

o .o
original "Napster” design .\ yieq
1) when peer connects, it ~ directory server

application on her Bob's PC to Alice’s
notebook computer
Intermittently
connects to Internet;
gets new IP address
for each connection
Asks for "Hey Jude"
0 Application displays
other peers that have
copy of Hey Jude.

O

O

notebook: HTTP

0 While Alice downloads,
other users uploading
from Alice.

0 Alice's peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2: Application Layer 3

informs central server: @ =

0 IP address
0 content

2) Alice queries for “"Hey

Jude”

3) Alice requests file from

Bob

2: Application Layer 4

P2P: problems with centralized directory

0 Single point of failure

0 Performance
bottleneck

0 Copyright
infringement

file transfer is
decentralized, but
locating content is
highly decentralized

2: Application Layer 5

Query flooding: Gnutella

O fully distributed
0 nho central server
0 public domain protocol

0 many Gnutella clients
implementing protocol

overlay network: graph

0 edge between peer X
and Y if there's a TCP
connection

0 all active peers and
edges is overlay net

0 Edge is not a physical
link

0 Given Feer‘ will
typically be connected
with < 10 overlay
neighbors

2: Application Layer 6

Gnutella Messages

Descriptor Description
Ping Used to actively discover hosts on the network. A servent receiving a Ping
is expected to respond with one or more Pong

Pong The respense to a Ping. Includes the address of a connected Gm.melra servent and
information regaru-nq the amount of data it is making awaﬂable o the network.

Cuery The primary ing the distrib network. A servent receivi
a Query descriptor will respond with a CueryHit if a manch is found against its Iocal
data set.

QueryHit The response to a Cuery. This descriptor provides the recipient with emough
infermation to acquire the data matching the Query.

Push A mechanism that allows a firewalled servent to contribute file-based data to the
network.

2: Application Layer 7

Gnutella: protocol

File transfer:

0 Query message HTTP

sent over existing TCP
connections

0 peers forward
Query message
0 QueryHit
sent over
reverse
path

Scalability:
limited scope

flooding @
2: ApplicationLayer 8

Gnutella Connection Setup

GNUTELLA CONNECT/<profocol version string=\nln

vmeﬂe <protocol version sting> s defined 1o be the ASCI sting 04 (or, equivalenty,
“3x2e'x347) in this version of the specification.

A servent wishing to accept the connection request must respond with

GNUTELLA OKinln

2: Application Layer 9

Gnutella Message Header

Descriptor Header
Paryload
Daoscriptor I Destrgor ™m Hogps Payload Longs
Byte offset [(] L] T L] 10 =z

Descriptor A 16-byte string uniquely identifiing the descriptor on the network
(1v]

Payload (e = Ping

Descriptor Q01 = Pong
0x40 = Push
080 = Query
(81 = QueryHit

2: Application Layer 10

Gnutella Message Header (Cont.)

TTL Time To Live. The number of times the descriplor will be forwarded by
Gnutella servents before it is removed from the network. Each servent will
decrement the TTL before passing it on to ancther servent. When the TTL
reaches 0, the descriptor will no longer be forwarded.

Hops The number of times the descriptor has been forwarded. As a descriplor is
from servent to servent, the TTL and Hops fields of the header must
satisfy the following condition:

TTL{O) = TTL{D) + Hops(i)

Where TTLij} and Hops(i) are the value of the TTL and Heps fields of the
header at the descriptor's i-th hop, for i == 0.

Payload The length of the descriptor immediately following this header. The next
Length descriptor header is located exactly Payload_Length bytes from the end of
this header i.e. there are no gaps or pad bytes in the Gnulella data stream.

2: Application Layer 11

Ping Message

Ping (0x00)

Ping descriplors have no associated payload and are of 2ero length. A Ping is simply
represented by a Descriptor Header whose Payload Descriptor field is 0x00 and whose
Payioad_ Length fisld is (00000000,

A ssrvent uses Ping descriptors to actively probe the network for other servents. A servent
receiving a Ping descriplor may elect to respond with a Pong descriplor, which confains the
address of an active Gnufella servent (possibly the one sending the Pong descriptor) and the
amount of data it’s sharing on the nefwork.

This ion makes no as fo the frequency at which a servent shouid
send Ping descriplors, although servent implementers should make every aftempt to minimize
Ping traffic on the nefwork

2: Application Layer 12

Pong Message

Pong (0x01)
Numer of Fikes
Port 1P Address e
Byte offsat [2
Poat The port number on which the respending host can accept incoming
connections.

IP Address The [P address of the responding host.

This field is in big-endian format,
Number of The number of files that the servent with the given [P address and port is
Files Shared sharing on the network.

Number of The number of kilobytes of data that the servent with the given IP address and
Kilobytes port is sharing on the network.
Shared

Pong descriplors are only sent in respense to an incoming Ping descriptor. It is valid for maore
than one Pong descriptor to be sent in response to a single Ping descriptor. This enables host
caches to send cached servent address information in response to a Ping request.

2: Application Layer 13

Big-Endian vs. Little-Endian

big-endian

The sdjecerers big-emdion ad Eitle-emdian refer b whach bvtes sre mest st o sl -byte it trpes aed
describe the erder m which & enqqammce of bytes n orrdm s computer s memony

In a big-endun rystem, the meat sigadicant value n the sequence i stored at the lowest grorags wddeas e, St
In a be-rmds pyvtvmn, the Jeast mgeaicans valus m the sequence i ftored Bret. For cxmmple, coander the mamber
10125 2 to e vesth powes pibis cae) imsred a4 by teger

DO000000 COOGN0G H0000100 D000
BigFodimn LottbeFudian
Addiess tepresentation tepresentanion of

Masy manie
mebidg P
BRTIEH

cegpeaters, partioadarty [BM mardram:
the ke prefan pymes The B

bag-endun architecsae Mont modem compaens,
Fpstrm i b-emian bet s € can imderstand both

2: Application Layer 14

Query Message

Query (0x80)
Byleofiset 0
ini The mini speed (in kb d) of servents that should respond fo this
Speed ge. A servent receiving a Query descriptor with a Minimum Speed fisld
f n khis shauid anke raennnd with & OvendHit if it s shla tn commonicate at &
speed == n kb's
Search A nul {i.e. 0x00) terminated search string. The maximum length of this string i
Criteria bounded by the Payload_Length field of the descripior header.

2: Application Layer 15

QueryHit Message

QueryHit (0x81)

el I 2 Il)
[i] 1 FIE) [T 0 mn n n+ G

Eyto offsat

Humber of The number of query hits in the result set (see below).

Hits

Port The port number on which the responding host can accept incoming

connections,
IF Address The IP address of the responding host.

This field is in big-endian format.
Speed The speed (in kb/second) of the responding host.

2: Application Layer 16

QueryHit Message (cont.)

Result Set A set of responses fo the comesponding Query. This set contains
Numnber_of_Hits slements, sach with the fallowing structurs.

File Index A number, assigned by the responding host, which is used fo
uniqualy identfy the fle malching the comasponding query.

File Size The size {in byfes) of the file whose index is File_inde:x.

File Name The double-nu (ie. Ox0000) ferminated name of the file
whose index is File_indes.

The size of the result sef is bounded by the size of the Payload_Length field in
the Descriptor Header,

2: Application Layer 17

Query Routing

Pang

Ping

I’lngl

Example 1. Ping/Pong Routing

Query Push
— —
-—
Hit
auery f lnn i} Jouery —= i-.nhf Lpusn
Push
File

Example 2. QuerylQueryHitPush Routing

2: Application Layer 18

File Download

GET /get/<File Index=/<File Name=/ HTTP/.0win
Connection: Keep-Alveirin

Range: bytes=0nn

UserAgent: Grutellalsin”

in

where <File Index= and <File Name> are one of the File IndexFile Name pairs from a QueryHit
descriptor's Result Set. For example, if the Result Set from a QueryHit descripior contained the
eniry

File Index | 2468

File Size | 4356759

File Name | Foobar mp3ld0u0g

2: Application Layer 19

Exploiting heterogeneity: Gnutella
v.2

0 Each peer is either a
supernode or assigned
to a supernode.
0 TCP connection between
peer and its group leader.
0 TCP connections between
some pairs of group
leaders. ¢
0 Supernode tracks the
content in all its

® ordinary peer

Gnutella v. 2: Querying

0 On connection client updates its supernode
with all its files

O Client sends keyword query to its
supernode

O Supernode responds with matches:

O Supernode forwards query to other
supernodes

O Client then selects files for downloading

2: Application Layer 21

children.
[Y —
raigring atonahips
ey oo
2: Application Layer 20

2: Application Layer

eMule connection setup

Client Server

Tt e Tanfect (Top; d Client Server

Iy
g d St v

s “annect (1Cp,
o—, !

hele nrec TCPY

" | timeout
~—bla anguy, || -

A
sopoes mEBSA0R

Connection startup

Disconnect -

iaenacoe—|¥

-
Yaryg

1 changh -

Erd b 4~
v

2: Application Layer 23

Client Server

2: Application Layer

24

File Search

Clignt

Start bme

searmmun

Sarver

~Search e
Lo

P8 Sourpe,
—

gapves SIS~

sl SOUCES—
|, founds

End bme.
\J

Figure 2.5: File search sequence

2: Application Layer 25

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 23 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web
0 25 DNS server

2: Application Layer 26

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket APT

0 introduced in BSD4.1 UNIX,
1981

0 explicitly created, used,
released by apps

0 client/server paradigm

0 two types of transport
service via socket API:

0 unreliable datagram

0 reliable, byte stream-
oriented

— socket

a host-local,
application-created,
O5-controlled interface
(a “door") into which
application process can
both send and
receive messages to/from
another application
process

2: Application Layer 27

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

controlled by

contro!led.by application
appllcuflonI developer
developer
controlled by [[TCP with|¢——o——— s:z:::lil’;d bY
operating | [buffers internet
4 system
system | |variables 4
host or host or
server server

2: Application Layer 28

Socket programming with TCP

Client must contact server

[server process must first
be running

0 server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:

0 creating client-local TCP

socket

specifying IP address, port

number of server process

0 When client creates
socket: client TCP
establishes connection to
server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client
0 allows server to talk with
multiple clients
0 source port numbers
used to distinguish
clients (more in Chap 3)

application viewpoint
TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

2: Application Layer 29

Stream jargon

0 A stream is a sequence of
characters that flow into
or out of a process.

0 Aninput stream is
attached to some input
source for the process, eg,
keyboard or socket.

0 Anoufput stream is
attached to an output
source, eg, monitor or
socket.

2: Application Layer 30

Socket programming with TCP

keyboard moritor

Fhee
Client
process

Example client-server app:

1) client reads line from
standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

[iFromuser

—

output
stream

inFromServer

outToServer

client TCP

socket &

Sacket

tonetwork frominetwork

2: Application Layer 31

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

—
TCP
wait for incoming €= = = = = = — —p create socket, .
connection request connection setup ~ connect to hostid, port=x
connectionSocket = clientSocket =
Socket()

welcomeSocket.accept()
l send request using

read request from / clientSocket

connectionSocket

write reply to

connectionSocket | 0 reply from

1 clientSocket

close

connectionSocket close
clientSocket

2: Application Layer 32

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception

String sentence;
String modifiedSentence;

Create .
input stream BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Create
client socket, Socket clientSocket = new Socket("hostname", 6789);
connect fo server

Create DataOutputStream outToServer =
output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket
2: Application Layer 33

Example: Java client (TCP), cont.

input stream new BufferedReader(new

Create BufferedReader inFromServer =
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line .
to server outToServer.writeBytes(sentence + '\n');

Read line modifiedSentence = inFromServer.readLine();
from server.
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2: Application Layer 34

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

String clientSentence;
Create String capitalizedSentence;
welcoming socket

at port 6789

Wait, on welcoming while(true) {
socket for contact Socket connectionSocket = welcomeSocket.accept();

by client,

— ServerSocket welcomeSocket = new ServerSocket(6789);

. BufferedReader inFromClient =
Create inpuf new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket.

2: Application Layer 35

Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket|—

new DataOutputStream(connectionSocket.getOutputStream());
Read in line . . " ;

from socket| ™ clientSentence = inFromClient.readLine();
capitalizedSentence = clientSentence.toUpperCase() + '\n';

Werite out line| outToClient.writeBytes(capitalizedSentence);
to socket)
}

} End of while loop,
loop back and wait for
another client connection

2: Application Layer 36

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing

network applications (1 2.7 Socket programming
0 2.2 Web and HTTP with TCP
023 FTP 0 2.8 Socket programming
O 2.4 Electronic Mail with UDP

0 SMTP, POP3, IMAP 0 2.9 Building a Web
0 25DNS server

2: Application Layer 37

Socket programming with UDP

UDP: no “connection” between
client and server

0 no handshaking

0 sender explicitly attaches application viewpoint
IP address and port of) .
destination to each packet UDP provides unreliable transfer

of groups of bytes (“datagrams”)

O server must extract IP between client and server

address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

2: Application Layer 38

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

port=x, for clientSocket =

incoming request: DatagramSocket()

serverSocket =

DatagramSocket()

— Create, address (hostid, port=x,
/ send datagram request

read request from using clientSocket
serverSocket

write réply to

serverSocket \ PR
specifying client read reply from

host address, clientSocket
port number close l

clientSocket

2: Application Layer 39

Example: Java client (UDP)

Keyboard monitor
Client i
Input: receives
rocess
P packet (TCP
Output: sends ~_ recelve:i “byte
packet (TCP sent [y stream”)
"byte stream”) uop wop
packet g packet

client UDP

socket

tonetwork from network

2: Application Layer 40

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

Create

]—‘{
input stream BufferedReader inFromUser =

Cr‘eﬂfe:l new BufferedReader(new InputStreamReader(System.in));

client socket] DatagramSocket clientSocket = new DatagramSocket();

Translate _ . -
hosthame to IP InetAddress IPAddress = InetAddress.getByName("hostname");
address using DNS | e sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
2: Application Layer 41

Example: Java client (UDP), cont.

Create datagram|
with data-to-send,| DatagramPacket sendPacket =

length, IP addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram| clientSocket.send(sendPacket);
to servenr
DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);
Read datagram
from szgrvzr clientSocket.receive(receivePacket);

String modifiedSentence =

new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);

clientSocket.close();

}

2: Application Layer 42

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create
datagram socket

{
at port 9876, DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

Create space for]

received dc’rugrcm —— DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Receive| serverSocket.receive(receivePacket);
datagram|

2: Application Layer 43

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr .
port #, 01{|_‘InetAddress IPAddress = receivePacket.getAddress();

sender, —int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

— =
to send to client DatagramPacket sendPacket

new DatagramPacket(sendData, sendData.length, IPAddress,

. port);
Werite out
datagram serverSocket.send(sendPacket);
to socket| }
} End of while loop,

loop back and wait for

another datagram
2: Application Layer 44

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 7 2.7 Socket programming

0 app architectures with TCP

0 app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP
0 2.4 Electronic Mail 0 2.9 Building a Web

0 SMTP, POP3, IMAP server
0 25DNS

2: Application Layer 45

Building a simple Web server

handles one HTTP 0 after creating server,
request you cah request file

O accepts the request using a browser (eg IE
parses header explorer))
obtains requested file O see text for details
from server's file

system

creates HTTP response

message:

0 header lines + file

sends response to client

[m]

o O

[m]

[m}

2: Application Layer 46

Chapter 2: Summary
Our study of network apps now completel!

O Application architectures O specific protocols:

o client-server 0 HTTP
1 P2pP o FTP
* hybrid 0 SMTP, POP, IMAP
0 application service o DNs]
requirements: 0 socket programming
o reliability, bandwidth,
delay

0 Internet transport
service model

0 connection-oriented,
reliable: TCP

0 unreliable, datagrams: UDP
2: Application Layer 47

Chapter 2: Summary

Most importantly: learned about protocols

O typical request/reply
message exchange:

0 client requests info or
service

0 server responds with
data, status code
O message formats: fransfer
9 . iy “complexity at network
0 headers: fields giving edge”
info about data
0 data: info being
communicated

O

control vs. data msgs

0 in-band, out-of-band
0 centralized vs. decentralized
stateless vs. stateful
reliable vs. unreliable msg

o o

[

2: Application Layer 48

