
1

2: Application Layer 1

Chapter 2 (continued)
Application Layer –
part 2

Computer Networking:
A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2004
J.F Kurose and K.W. Ross, All Rights Reserved

2: Application Layer 2

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❍ app architectures
❍ app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 3

P2P file sharing

Example
❒ Alice runs P2P client

application on her
notebook computer

❒ Intermittently
connects to Internet;
gets new IP address
for each connection

❒ Asks for “Hey Jude”
❒ Application displays

other peers that have
copy of Hey Jude.

❒ Alice chooses one of
the peers, Bob.

❒ File is copied from
Bob’s PC to Alice’s
notebook: HTTP

❒ While Alice downloads,
other users uploading
from Alice.

❒ Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2: Application Layer 4

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
❍ IP address
❍ content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2: Application Layer 5

P2P: problems with centralized directory

❒ Single point of failure
❒ Performance

bottleneck
❒ Copyright

infringement

file transfer is
decentralized, but
locating content is
highly decentralized

2: Application Layer 6

Query flooding: Gnutella

❒ fully distributed
❍ no central server

❒ public domain protocol
❒ many Gnutella clients

implementing protocol

overlay network: graph
❒ edge between peer X

and Y if there’s a TCP
connection

❒ all active peers and
edges is overlay net

❒ Edge is not a physical
link

❒ Given peer will
typically be connected
with < 10 overlay
neighbors

2

2: Application Layer 7

Gnutella Messages

2: Application Layer 8

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP❒ Query message

sent over existing TCP
connections
❒ peers forward
Query message
❒ QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 9

Gnutella Connection Setup

2: Application Layer 10

Gnutella Message Header

2: Application Layer 11

Gnutella Message Header (Cont.)

2: Application Layer 12

Ping Message

3

2: Application Layer 13

Pong Message

2: Application Layer 14

Big-Endian vs. Little-Endian

2: Application Layer 15

Query Message

2: Application Layer 16

QueryHit Message

2: Application Layer 17

QueryHit Message (cont.)

2: Application Layer 18

Query Routing

4

2: Application Layer 19

File Download

2: Application Layer 20

Exploiting heterogeneity: Gnutella
v. 2
❒ Each peer is either a

supernode or assigned
to a supernode.

❍ TCP connection between
peer and its group leader.

❍ TCP connections between
some pairs of group
leaders.

❒ Supernode tracks the
content in all its
children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 21

Gnutella v. 2: Querying

❒ On connection client updates its supernode
with all its files

❒ Client sends keyword query to its
supernode

❒ Supernode responds with matches:
❒ Supernode forwards query to other

supernodes
❒ Client then selects files for downloading

2: Application Layer 22

eMule

2: Application Layer 23

eMule connection setup

2: Application Layer 24

Connection startup

5

2: Application Layer 25

File Search

2: Application Layer 26

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 27

Socket programming

Socket API
❒ introduced in BSD4.1 UNIX,

1981
❒ explicitly created, used,

released by apps
❒ client/server paradigm
❒ two types of transport

service via socket API:
❍ unreliable datagram
❍ reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 28

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 29

Socket programming with TCP
Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process
❒ When client creates

socket: client TCP
establishes connection to
server TCP

❒ When contacted by client,
server TCP creates new
socket for server process to
communicate with client

❍ allows server to talk with
multiple clients

❍ source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 30

Stream jargon

❒ A stream is a sequence of
characters that flow into
or out of a process.

❒ An input stream is
attached to some input
source for the process, eg,
keyboard or socket.

❒ An output stream is
attached to an output
source, eg, monitor or
socket.

6

2: Application Layer 31

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network
in

Fr
om

S
er

ve
r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2: Application Layer 32

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 33

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 34

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 35

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 36

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

7

2: Application Layer 37

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 38

Socket programming with UDP

UDP: no “connection” between
client and server

❒ no handshaking
❒ sender explicitly attaches

IP address and port of
destination to each packet

❒ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 39

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

2: Application Layer 40

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network
re

ce
iv

eP
ac

ke
t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

2: Application Layer 41

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 42

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

8

2: Application Layer 43

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 44

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 45

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❍ app architectures
❍ app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 46

Building a simple Web server

❒ handles one HTTP
request

❒ accepts the request
❒ parses header
❒ obtains requested file

from server’s file
system

❒ creates HTTP response
message:

❍ header lines + file
❒ sends response to client

❒ after creating server,
you can request file
using a browser (eg IE
explorer)

❒ see text for details

2: Application Layer 47

Chapter 2: Summary

❒ Application architectures
❍ client-server
❍ P2P
❍ hybrid

❒ application service
requirements:

❍ reliability, bandwidth,
delay

❒ Internet transport
service model

❍ connection-oriented,
reliable: TCP

❍ unreliable, datagrams: UDP

Our study of network apps now complete!
❒ specific protocols:

❍ HTTP
❍ FTP
❍ SMTP, POP, IMAP
❍ DNS

❒ socket programming

2: Application Layer 48

Chapter 2: Summary

❒ typical request/reply
message exchange:

❍ client requests info or
service

❍ server responds with
data, status code

❒ message formats:
❍ headers: fields giving

info about data
❍ data: info being

communicated

Most importantly: learned about protocols

❒ control vs. data msgs
❍ in-band, out-of-band

❒ centralized vs. decentralized
❒ stateless vs. stateful
❒ reliable vs. unreliable msg

transfer
❒ “complexity at network

edge”

