Chapter 2
Application Layer -
part 1

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They're in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a ot of work on our part. In return for use, we only ask the

Computer Networking:
A Top Down Approach
following: Featuring the Internet,
O If you use these slides (e.g., in a class) in substantially unaltered form, 3rd ediTion.

that you mention their source (after all, we'd like people to use our book!)
0 If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Addison-Wesley, July
2004.

Thanks and enjoyl JFKIKWR

All material copyright 1996-2004

J.F Kurose and K.W. Ross, All Rights Reserved o
2: Application Layer 1

Chapter 2: Application layer

Jim Kurose, Keith Ross

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 1 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 23 FTP 0 2.8 Socket programming
O 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web
0 2.5 DNS server

2: Application Layer

2

Chapter 2: Application Layer

Our goals:
O conceptual,
implementation

0 learn about protocols
by examining popular
application-level

aspects of network protocols
application protocols o HTTP
o transport-layer o FTP

service models 0 SMTP / POP3 / IMAP
o client-server ©ONS

paradigm 0 programming network
O peer-to-peer applications

paradigm 0 socket APT

2: Application Layer 3

Some network apps

0 E-mail 0 Internet telephone
0 Web 0 Real-time video
0 Instant messaging conference
0 Remote login O Massive parallel
0 P2P file sharing computing
0 Multi-user network
games
0 Streaming stored
video clips

2: Application Layer

4

Creating a network app

Werite programs that
0 run on different end
systems and
0 communicate over a
network.

0 eg., Web: Web server
software communicates
with browser software

No software written for
devices in network core

0 Network core devices do
not function at app layer

0 This design allows for
rapid app development

2: Application Layer 5

Chapter 2: Application layer

0 2.1Principles of 0 2.6 P2P file sharing
network applications 1 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
0 SMTP, POP3, IMAP 0 2.9 Building a Web
0 2.5 DNS server

2: Application Layer

6

Application architectures

O Client-server
O Peer-to-peer (P2P)
O Hybrid of client-server and P2P

2: Application Layer 7

Client-server archicture

server:

0 always-on host

0 permanent IP address

0 server farms for scaling
clients:

0 communicate with

server

0 may be intermittently
connected
may have dynamic IP
addresses
0 do not communicate

directly with each other

2: Application Layer 8

Pure P2P architecture

O no always on server

arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

example: Gnutella

[m}

O

O

Highly scalable

But difficult to manage

2: Application Layer 9

Hybrid of client-server and P2P

Napster
0 File transfer P2P
0 File search centralized:
+ Peers register content at central server
+ Peers query same central server to locate content
Instant messaging
| Chatting between two users is P2P
0 Presence detection/location centralized:

+ User registers its IP address with central server
when it comes online
* User contacts central server to find IP addresses of

Processes communicating

Process: program running Client process: process
within a host. that initiates

O within same host, two communication
processes communicate Server process: process
using inter-process that waits to be
communication (defined contacted
by OS).

O processes in different O Note: applications with
hosts communicate by P2P architectures have

client processes &
server processes

exchanging messages

2: Application Layer 11

buddies
2: Application Layer 10
Sockets
host or host or

0 process sends/receives sonvor sonver
messages to/from its q
socket

0 socket analogous to door
0 sending process shoves
message out door
0 sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process
0 API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

controlled by
app developer

(
\

buffers, lifi buffers,
variables [* — | variables

controlled
by OS

2: Application Layer 12

Addressing processes

0 For a process to u]
receive messages, it
must have an identifier

0 A host has a unique32-
bit IP address

0 Q: does the IP address U
of the host on which
the process runs
suffice for identifying 0O
the process?

0 Answer: No, many
processes can be
running on same host

Identifier includes
both the IP address
and port numbers
associated with the
process on the host.
Example port numbers:
0 HTTP server: 80
0 Mail server: 25
More on this later

2: Application Layer 13

App-layer protocol defines

0 Types of messages
exchanged, eg, request
& response messages

0 Syntax of message
types: what fields in
messages & how fields
are delineated

0 Semantics of the
fields, ie, meaning of
information in fields

O Rules for when and
how processes send &
respond to messages

Public-domain protocols:

0 defined in RFCs

0 allows for
interoperability

0 eg, HTTP, SMTP

Proprietary protocols:

0 eg, KaZaA

2: Application Layer 14

What transport service does an app need?

Data loss

0 some apps (e.g., audio) can
tolerate some loss

0 other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing

0 some apps (e.g.,
Internet telephony,
interactive games)
require low delay o be
“effective”

Bandwidth

0 some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”

0 other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 15

Transport service requirements of common apps

Application Dataloss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video loss-tolerant

audio: 5kbps-1Mbps Yes, T00's msec
video:10kbps-5Mbps

stored audio/video loss-tolerant

same as above yes, few secs

interactive games |oss-tolerant

few kbps up yes, T00's msec

instant messaging no loss

elastic yes and no

2: Application Layer 16

Internet transport protocols services

TCP service:

0 connection-oriented.: setup)
required between client and
server processes

0 reliable transport between 0
sending and receiving process

0 flow control: sender won't
overwhelm receiver

0 congestion control: throttle
sender when network
overloaded

0 does not provide: timing,
minimum bandwidth
guarantees

UDP service:

unreliable data transfer
between sending and
receiving process

does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is

there a UDP?

2: Application Layer 17

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access _ Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia proprietary TCP or UDP
(e.g. RealNetworks)
Internet telephony proprietary
(e.g., Dialpad) typically UDP

2: Application Layer 18

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing

network applications 0 2.7 Socket programming
0 app architectures with TCP
0 app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP
0 2.4 Electronic Mail 0 2.9 Building a Web
0 SMTP, POP3, IMAP server
0 2.5 DNs

2: Application Layer 19

Web and HTTP

First some jargon

0 Web page consists of objects

0 Object can be HTML file, JPEG image, Java
applet, audio file,...

0 Web page consists of base HTML-file which
includes several referenced objects

0 Each object is addressable by a URL

0 Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 20

HTTP overview

HTTP: hypertext
transfer protocol @

Hrm
0 Web's application layer pC runninm
protocol Explorer "o
client/server model e
0 client: browser that

requests, receives,
“displays" Web objects

0 server: Web server Apc;i’:ievrvw
sends objects in @
response to requests]
Mac running
0 HTTP 1.0: RFC 1945 Navigator

0 HTTP 1.1: RFC 2068

2: Application Layer 21

HTTP overview (continued)

Uses TCP:

0 client initiates TCP
connection (creates socket)
to server, port 80

0 server accepts TCP
cohnection from client

0 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

0 TCP connection closed

Protocols that maintain

HTTP is "stateless”

0 server maintains no
information about
past client requests

aside

"state” are complex!

0 past history (state) must
be maintained

0 if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 22

HTTP connections

Nonpersistent HTTP

(contains text,
Suppose user enters URL references to 10

www.someSchool .edu/someDepartment/home.index jpegimages)

Nonpersistent HTTP Persistent HTTP

0 At most one objectis O Multiple objects can
sent over a TCP be sent over single
connection. TCP connection

la. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

1b. HTTP server at host
www.someSchool.edu waiting

between client and for TCP connection at port 80.
o HTTP/I.'O uses < r‘\‘/N . “accepts"” connection, notifying
nonpersistent HTTP erver. client

n

. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

0 HTTP/1.1 uses
persistent connections
in default mode

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time
2: Application Layer 23 l 2: Application Layer 24

Nonpersistent HTTP (cont.)

/ 4. HTTP server closes TCP

connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg

. objects
fime 6. Steps 1-5 repeated for each
| of 10 jpeg objects

2: Application Layer 25

Response time modeling

Definition of RRT: time to

send a small packet to @
travel from client to

server and back. initiate TCP __
. . connection \
Response time: RTT{ /

0 one RTT to initiate TCP request

connection file \ e
0 one RTT for HTTP o /};{;’mmﬂ

request and first few file — e

bytes of HTTP response received

to return e o

O file transmission time
total = 2RTT+transmit time

2: Application Layer 26

Persistent HTTP

Nonpersistent HTTP issues: Persistent without pipelining:

O requires 2 RTTs per object [client issues new request

0 OS must work and allocate only when previous)
host resources for each TCP response has been received
connection | one RTT for each

0 but browsers often open referenced object

parallel TCP connections to Persistent with pipelining:
fetch referenced objects 0 default in HTTP/1.1

Persistent HTTP 0 client sends requests as

0 server leaves connection soon as it encounters a
open after sending response referenced object

0 subsequent HTTP messages [as little as one RTT for all

between same client/server the referenced objects
are sent over connection

2: Application Layer 27

HTTP request message

0 two types of HTTP messages: request, response
0 HTTP request message:
0 ASCII (human-readable format)

request line
(GET, POST,\ GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool.edu
User-agent: Mozilla/4.0
heﬂ_de" Connection: close
lines Accept-language:fr

Carri t
ur‘r"il:gef;z dum'/Zextra carriage return, line feed)
indicates end
of message

2: Application Layer 28

HTTP request message: general format

n rer;]::st

header
lines

Entity Body

2: Application Layer 29

Uploading form input

Post method:

0 Web page often
includes form input URL method:
0 Input is uploaded to 0 Uses GET method
server inentity body () Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeysé&banana

2: Application Layer 30

Method types

HTTP/1.0 HTTP/1.1

0 GET 0 GET,POST, HEAD
0o POST 0 PUT

0 HEAD 0 uploads file in entity

0 asks server to leave body to path specified

requested object out of in URL field
response 0 DELETE
0 deletes file specified in
the URL field

2: Application Layer 31

HTTP response message

status line
rotocol
51('ﬁ1'u5 code\’HTTP/I.l 200 OK
status phrase) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
header Server: Apache/1.3.0 (Unix)
lines Last-Modified: Mon, 22 Jun 1998

Content-Length: 6821
Content-Type: text/html

data, eg., — data data data data data ...

requested
HTML file

2: Application Layer 32

HTTP response status codes

In first line in server->client response message.
A few sample codes:

200 OK
0 request succeeded, requested object later in this message
301 Moved Permanently

0 requested object moved, new location specified later in
this message (Location:)

400 Bad Request

0 request message not understood by server
404 Not Found

0 requested document not found on this server
505 HTTP Version Not Supported

2: Application Layer 33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1 By typing this in (hit carriage
Host: cis.poly.edu refurn twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 34

User-server state: cookies

Many major Web sites Example:
use cookies 0 Susan access Internet

Four components: always from same PC
1) cookie header line in She visits a specific e-
the HTTP response commerce site for first
message fime o
2) cookie header line in When initial ,HTTP .
HTTP request message requests arrives at site,
3) cookie file kept on site creates a unique ID

) and creates an entry in
user’s host and managed backend database for
by user’s browser ™

4) back-end database at
Web site

[}

[m}

2: Application Layer 35

Cookies: keeping "state” (cont.)

client server

usual http request msg |, server «%"y

usual http response + [creates ID %, 75,
Set-cookie: 1678 | 1678 for user \é%
usual http request msg . D

cookie: 1678 cookie- %
specific 2o

action

&
one week later: d
Cookie file usual http request msg cookie-
cookie: 1678 s
amazon: 1678 spectific
cbay: 8734 usual http response msg action

2: Application Layer 36

Cookies (continued)

What cookies can bring:
O authorization

0 shopping carts

O recommendations

0 user session state
(Web e-mail)

—————————— aside
Cookies and privacy:
0 cookies permit sites to
learn a lot about you

0 you may supply hame
and e-mail to sites

O search engines use
redirection & cookies
to learn yet more

0 advertising companies
obtain info across
sites

2: Application Layer 37

Web caches (proxy server)

Goal: satisfy client request without involving origin server

[user sets browser: Web
accesses via cache

TTI
0 browser sends all HTTP @ Hr Proxy

requests to cache

0 object in cache: cache C""'"’Hh‘p

returns object

else cache requests
object from origin
server, then returns

object to client @

origin
server

server
B

origin
server

2: Application Layer 38

More about Web caching

0 Cache acts as both client
and server

0 Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?

0 Reduce response time for
client request.

0 Reduce traffic onan
institution's access link.

0 Internet dense with caches
enables “poor” content
providers to effectively
deliver content (but so
does P2P file sharing)

2: Application Layer 39

Caching example

Assumptions

0 average object size = 100,000

bits
0 avg. request rate from

institution's browsers to origin

servers = 15/sec

0 delay from institutional router

to any origin server and back
to router =2 sec

Consequences

0 utilization on LAN = 15%

0 utilization on access link = 100%

O total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
T servers
public

Internet _@

1.5 Mbps
access link

network 10 Mbps LAN

institutional
cache

2: Application Layer 40

Caching example (cont)

Possible solution

0 increase bandwidth of access
link to, say, 10 Mbps

Consequences
utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
0 often a costly upgrade

@ origin

@\ T servers
public

Internet @

10 Mbps
access link

institutional

netvork 10 Mbps LAN

institutional
cache

2: Application Layer 41

Caching example (cont)

Install cache

0 suppose hit rate is .4

Consequence

0 40% requests will be
satisfied almost immediately

0 60% requests satisfied by
origin server

0 utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec

O total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
milliseconds < 1.4 secs

@ origin

@\ T servers
public

Internet _@

1.5 Mbps
access link

institutional
network 10 Mbps LAN

institutional
cache

2: Application Layer 42

0 Goal: don't send object if

Conditional GET

cache has up-to-date cached
version
cache: specify date of
cached copy in HTTP request
If-modified-since:
<date>

[server: response contains no

object if cached copy is up-

to-date:

HTTP/1.0 304 Not
Modified

cache

server

HTTP request msg

If-modified-since: —

<+ HTTP/1.0 200 OK

HTTP response

<data>

2: Application Layer

<date> object
not
HTTP response modified
HTTP/1.0
304 Not Modified
HTTP request msg
If-modified-since: [— .
<date> object
modified

43

Chapter 2: Application layer

0

2.1 Principles of
network applications
2.2 Web and HTTP
2.3FTP

2.4 Electronic Mail
0 SMTP, POP3, IMAP
2.5 DNS

O

0

2.6 P2P file sharing

2.7 Socket programming
with TCP

2.8 Socket programming
with UDP

2.9 Building a Web
server

2: Application Layer 44

FTP: the file transfer protocol

____dh

,f@H wer | T
'J“ interface] ey

i

file transfer FTP

user
at host local file

system

erver

remote file
system

0 transfer file to/from remote host

0 client/server model

0 client: side that initiates transfer (either to/from

remote)

0 server: remote host

0 ftp: RFC 959
0 ftp server: port 21

2: Application Layer

45

FTP: separate control, data connections

FTP client contacts FTP
server at port 21, specifying
TCP as transport protocol
Client obtains authorization
over control connection
Client browses remote
directory by sending
commands over control
connection.

When server receives a
command for a file transfer,
the server opens a TCP data
cohnection to client

After transferring one file,
server closes connection.

client

TCP control connection
port 21

-
TCP data connection

FTP port 20 FTP
server

0 Server opens a second TCP

data connection to transfer
another file.

0 Control connection: “out of

band"

0 FTP server maintains "state”:

current directory, earlier
authentication

2: Application Layer 46

FTP commands, responses

Sample commands:

Sample return codes

[sent as ASCII text over
control channel

[USER username

[PASS password

0 LIST return list of file in
current directory

[J RETR filename retrieves
(gets) file

[J STOR filename stores

(puts) file onto remote
host

0 status code and phrase (as
in HTTP)

[J 331 Username OK,
password required

0 125 data connection
already open;
transfer starting

0 425 Can’t open data
connection

[0 452 Error writing
file

2: Application Layer

47

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 FTP

2.4 Electronic Mail
o SMTP, POP3, IMAP
25DNS

O

0

2.6 P2P file sharing

2.7 Socket programming
with TCP

2.8 Socket programming
with UDP

2.9 Building a Web
server

2: Application Layer 48

Electronic Mail (@ ovtgoing

message queue

O user mailbox

Three major components:
[0 user agents
0 mail servers

0 simple mail transfer
protocol: SMTP

User Agent

0 aka. "mail reader”

0 composing, editing, reading
mail messages

e.g., Eudora, Outlook, elm,
Netscape Messenger 7

[
. . . S¢
0 outgoing, incoming messages
stored on server

2: Application Layer 49

Electronic Mail: mail servers

Mail Servers
0 mailbox contains incoming
messages for user
0 message queue of outgoing
(to be sent) mail messages
0 SMTP protocol between mail
servers to send email
messages
0 client: sending mail
server
0 “server": receiving mail
server

2 [
user
agent|

i [
user
agent|

2: Application Layer 50

Electronic Mail: SMTP [RFC 2821]

0 uses TCP to reliably transfer email message from client
to server, port 25

0 direct transfer: sending server to receiving server
0 three phases of transfer

0 handshaking (greeting)

0 transfer of messages

0 closure
0 command/response interaction

0 commands: ASCII text

0 response: status code and phrase

0 messages must be in 7-bit ASCIT

2: Application Layer 51

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice's

message and “to" message over the TCP
bob@someschool .edu connection
2) Alice's UA sends message 5) Bob's mail server places the
to her mail server; message message in Bob's mailbox
placed in message queue 6) Bob invokes his user agent
3) Client side of SMTP opens to read message
TCP connection with Bob's
mail server

2: Application Layer 52

Sample SMTP interaction

: Do you like ketchup?
: How about pickles?

: 250 Message accepted for delivery
: QUIT
: 221 hamburger.edu closing connection

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alicelcrepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bobfhamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself
Cc

c

C:

S

(o}

S

2: Application Layer 53

Try SMTP interaction for yourself:

[l telnet servername 25

0 see 220 reply from server

0 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

2: Application Layer 54

SMTP: final words

0 SMTP uses persistent
connections

0 SMTP requires message
(header & body) to be in 7-
bit ASCIT o

Comparison with HTTP:

HTTP: pull
SMTP: push

both have ASCII

Mail message format

SMTP server uses
CRLF.CRLF to determine
end of message

command/response
interaction, status codes

0 HTTP: each object
encapsulated in its own
response msg

SMTP: multiple objects
sent in multipart msg

o

2: Application Layer 55

SMTP: protocol for
exchanging email msgs ,.
RFC 822: standard for text .7}),'::‘?
message format:
O header lines, e.g.,
0 To: body
0 From:
0 Subject:
different from SMTP
commandsi
O body

0 the "message”, ASCIL
characters only

2: Application Layer 56

Message format:

multimedia extensions

0 MIME: multimedia mail extension, RFC 2045, 2056
0 additional lines in msg header declare MIME content

type

MIME version

method used
to encode data

multimedia data
type, subtype,

parameter declaration |
/ base64 encoded data

encoded data

From: alice@crepes.fr

To: bobfhamburger.edu

Subject: Picture of yummy crepe.
[MIME-Version: 1.0

[Content-Transfer-Encoding: base64
l.Content-Type: image/jpeg

2: Application Layer 57

Mail access protocols

SMTP gz SMTP &z qccess Tk

e [user = el tocol t

provece B
0ooog 00000

sender’s mail receiver's mail
server server

0 SMTP: delivery/storage fo receiver's server
0 Mail access protocol: retrieval from server
0 POP: Post Office Protocol [RFC 1939]
« authorization (agent <-->server) and download
0 IMAP: Internet Mail Access Protocol [RFC 1730]
* more features (more complex)
* manipulation of stored msgs on server
o HTTP: Hotmail , Yahoo! Mail, etc.

2: Application Layer 58

POP3 protocol

POP3 (more) and IMAP

More about POP3 IMAP

U Previous example uses 0 Keep all messages in
“download and delete” one place: the server

mode. O Allows user to

0 Bob cannot re-read e- organize messages in
mail if he changes folders
client 0 IMAP keeps user state

k;? +OK POP3 server ready
C: user bob
authorization phase — | S: *oK
. C: pass hungry
0 client commands: S: +OK user successfully logged on
0 user: declare username Mc: 1list
0 pass: password S: 1 498
0 server responses S: 2 912
0 +0K s: -
C: retr 1
0 -ERR ’_T,——””’d S: <message 1 contents>
transaction phase efient: s
. . C: dele 1
0 list: list message numbers C: retr 2
0 retr: retrieve message by S: <message 1 contents>
number S: .
C: dele 2
0 dele: delete e
C: quit
U quit S: +OK POP3 server signing off

2: Application Layer 59

0 “Download-and-keep":
copies of messages on
different clients

0 POP3 is stateless
across sessions

across sessions:

0 names of folders and
mappings between
message IDs and folder
name

2: Application Layer 60

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications (1 2.7 Socket programming
0 2.2 Web and HTTP with TCP
023 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
0 SMTP, POP3, IMAP 0 2.9 Building a Web
0 25DNS server

2: Application Layer 61

DNS: Domain Name System

People: many identifiers:
0 SSN, name, passport #
Internet hosts, routers:

0 IP address (32 bit) -
used for addressing
datagrams

Domain Name System:
0 distributed database

implemented in hierarchy of
muny hame servers
application-layer protocol
host, routers, name servers to
communicate to reso/ve hames

0 “name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

(address/name translation)
0 note: core Infernet
function, implemented as
application-layer protocol
0 complexity at network's
“edge”

2: Application Layer 62

DNS

DNS services Why not centralize DNS?
0 Hostname to IP 0 single point of failure
address translation O traffic volume
0 Host aliasing 0 distant centralized
0 Canonical and alias database

names
0 Mail server aliasing
0 Load distribution

0 Replicated Web
servers: set of IP
addresses for one
canonical hame

0 maintenance

doesn't scale/

2: Application Layer 63

Distributed, Hierarchical Database

Root DNS Servers
com DNS servers org DNS servers edu DNS servers
poly.edu umass.edu
yahoo.com amazon.com pbs.org
DNS servers DNS servers DNS servers DNS serversDNS servers

Client wants IP for www.amazon.com: 15* approx:

0 Client queries a root server to find com DNS
server

0 Client queries com DNS server to get amazon.com
DNS server

0 Client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 64

DNS: Root name servers

0 contacted by local name server that can not resolve name

0 root name server:
0 contacts authoritative hame server if name mapping not known
0 gets mapping
0 returns mapping to local nhame server

a Verisign, Dulles, VA

c© Cogent, Herndon, VA (also Los Angeles)

40 Maryand Collego Park MOy RipE London (aso Amsterdam,
FiaBifila, Stockboim (lus 3

other locations)

m WIDE Tokyo
& NASA Mt View, CA
f Internet Software C. Palo Alo)

oz

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
I ICANN Los Angeles, CA

2: Application Layer 65

TLD and Authoritative Servers

O Top-level domain (TLD) servers: responsible
for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.

0 Network solutions maintains servers for com TLD
0 Educause for edu TLD

O Authoritative DNS servers: organization's
DNS servers, gr‘oviding authoritative
hostname to IP mappings for organization's
servers (e.g., Web and mail).

| Can be maintained by organization or service
provider

2: Application Layer 66

Local Name Server

0 Does not strictly belong to hierarchy

O Each ISP (residential ISP, company,
university) has one.
0 Also called "default name server"

0 When a host makes a DNS query, query is
sent to its local DNS server
0 Acts as a proxy, forwards query into hierarchy.

2: Application Layer 67

root DNS server

2
/ TLD DNS server
4
g —
t
local DNS servel
dns.poly.edu
A IRA

;S

,() authoritative DNS server
dns.cs.umass.edu

Example

0 Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

2: Application Layer 68

Recursive queries ... onssever
yad

recursive query:

| puts burden of name
resolution on
contacted name

TLD DNS ser
server
0 heavy load? t
local DNS server 4
iterated query: dns.poly.edu 5
0 contacted server 1|8

replies with name of
server to contact

0 "I don't know this
name, but ask this
server”

authoritative DNS server
= dns.cs.umass.edu

requesting host

cis.poly.edu

gaia.cs.umass.edu

2: Application Layer 69

DNS: caching and updating records

O once (any) name server learns mapping, it caches
mapping
0 cache entries ftimeout (disappear) after some
time
0 TLD servers typically cached in local name
servers
+ Thus root name servers not often visited
0 update/notify mechanisms under design by IETF

o RFC 2136
http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 70

DNS records

DNS: distributed db storing resource records (RR)

’RR for‘ma'r: (name, value, type, ttl)

0 Type=A 0 Type=CNAME
0 name is hostname 0 name is alias name for some
0 value is IP address “cannonical” (the real) name
o Type=NS www . ibm. com is really

. . servereast.backup2.ibm.com
0 name is domain (e.g.

foo.com)
0 value is IP address of [Type=MX

authoritative name

server for this domain

0 value is cannonical name

0 value is hame of mailserver
associated with name

2: Application Layer 71

DNS protocol, messages

DNS protocol : guery and reply messages, both with
same message format

msg header
identification: 16 bit #
for query, reply o query
uses same #
QSIS
O flags: (variatin number of quesions)

0 query or reply

0 recursion desired

0 recursion available

0 reply is authoritative

s
{vaviabis number of resourcs reconds)

athonty
{vaniathe number of BOURS FOCOdS)

adational inbrmation
{varinkba pumCer of resoUNCE reconds)

2: Application Layer 72

DNS protocol, messages

Name, type fields

for‘ a quer'y A aadsond s |
.
RRs in reponse ™ e nimens s aestorst
o ~—~— |
query i
[ariatte e of rgcurs recoeds]
records for
authoritative servers T e i ool ol
adisra
additional “helpful’ __—" ssmssdinsias

info that may be used

2: Application Layer 73

Inserting records into DNS

0 Example: just created startup “Network Utopia”
0 Register name networkuptopia.com at a registrar
(e.g., Network Solu‘rions?

0 Need to provide registrar with names and IP addresses of
your authoritative name server (primary and secondary)
0 Registrar inserts two RRs info the com TLD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

O Put in authoritative server Tyge A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

0 How do people get the IP address of your Web site?

2: Application Layer 74

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
0 app architectures with TCP
0 app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP
0 2.4 Electronic Mail 0 2.9 Building a Web
0 SMTP, POP3, IMAP server
0 25 DNS

2: Application Layer 75

P2P file sharing

0 Alice chooses one of

Example the peers, Bob.

0 Alice runs P2P client 0 File is copied from
application on her Bob's PC to Alice’s
notebook computer notebook: HTTP

0 While Alice downloads,

O

Intermittently
connects to Internet; >
gets new IP address from Alice.

for each connection Alice’s peer is both a
Asks for "Hey Jude" Web Fl'ent anl;i a

7 Application displays transient Web server.
other peers that have ~ All peers are servers =
copy of Hey Jude. highly scalable!

other users uploading

O
O

2: Application Layer 76

P2P: centralized directory

original "Napster” design . ..

1) when peer connects, it~ directory server
informs central server: g
0 IP address
0 content

2) Alice queries for "Hey
Jude"

3) Alice requests file from
Bob

Alice @
]

2: Application Layer 77

P2P: problems with centralized directory

0 Single point of failure file transfer is

0 Performance decentralized, but
bottleneck locating content is

O Copyright highly decentralized

infringement

2: Application Layer 78

Query flooding: Gnutella

O fully distributed overlay network: graph

0 no central server 0 edge between peer X
0 public domain protocol and Y if there's a TCP
O many Gnutella clients connection

implementing protocol O all active peers and

edges is overlay net

0 Edge is not a physical
link

0 Given peer will
typically be connected
with < 10 overlay
neighbors

2: Application Layer 79

Gnutella Messages

Descriptor Description

Ping Used to actively discover hosts on the network. A servent receiving a PFing
descriplor is expected to respond with one or more Pong

Pong The respense to a Ping. Includes the address of a connected Gmrrella servent and
information regarunnq the amount of data it is making available to the network

Cuery The primary for hing the distributed network. A servent receiving
a Query descriptor will respond with a QueryHit if a match is found against its local
data set.

QueryHit The response to a Query. This descriptor provides the recipient with enough
infermation to acquire the data matching the Query.

Push A mechanism that allows a firewalled servent to contribute file-based data to the
network.

2: Application Layer 80

Gnutella: protocol

File transfer:
0 Query message o HTTP
sent over existing TCP - T
connections
0 peers forward
Query message
0 QueryHit
sent over
reverse
path

Scalability:
limited scope

flooding @
2: Application Layer 81

Gnutella Connection Setup

GNUTELLA CONNECT/<protacol version string>\nin

where <protocol version sting> s defined 1o be the ASCI sting “04° (or, equivalently,
“302e1x347) in this version of the specification.

A servent wishing to accept the connection request must respond with

GNUTELLA OKinln

2: Application Layer 82

Gnutella Message Header

Descriptor Header

Parload
Descriptor I Destrgor m Hops. Paryload Lengt
Byte offset L] 3 L T L] L] =

Descriptor A 16-byte string uniquely identifiing the descriptor on the network
(1v]

Payload (e = Ping
Descriptor Gl =
0x40 = Push
080 = Query
081 = QueryHit

2: Application Layer 83

Gnutella Message Header (Cont.)

TTL Time To Live. The number of times the descriplor will be forwarded by
Gnutella servents before it is removed from the network. Each servent will
decrement the TTL before passing it on to ancther servent. When the TTL
reaches 0, the descriptor will no longer be forwarded.

Hops The number o times the descriptor has been forwarded. As a descriplor is
passed from ssrvent to servent, the TTL and Hops fields of the header must
satisfy the following condition:

TTL(O) = TTL{) + Hops(i)

Where TTLij} and Hops(i) are the value of the TTL and Heps fields of the
header at the descriptor's i-th hop, for i == 0.

Payload The length of the descriptor immediately following this header. The next
Length descriptor header is located exactly Payload_Length bytes from the end of
this header i.e. there are no gaps or pad bytes in the Gnufella data stream.

2: Application Layer 84

Ping Message

Ping (0x00)

Ping descriptors have no associated payload and are of 2ero length. A Ping is simply
represented by a Descripior Header whose Payload Descriplor field is Ox00 and whose
Payioad_ Length fisld is (00000000,

A ssrvent uses Ping descriptors to actively probe the network for other servents. A ssrvent
recening a Fing descriptor may elect to raspond with a Pong descriptor, which confains the
address of an actve Gnufella Servent (possibly the one sending the Pong descriptor) and the
amount of data it’s sharing on the nefwork.

This ion makes no as fo the freq vy at which a servent shouid
send Ping descriplors, although servent implementers should make every aftempt to minimize
Ping traffic on the nefwork

2: Application Layer 85

Pong Message

Pong (0x01)
Numer of Fikes
Port 1P Address e
Byte offsat [2
Poat The port number on which the responding host can accept incoming
connections.

IP Address The [P address of the responding host.

This field is in big-endian format,
Number of The number of files that the servent with the given IF address and port is
Files Shared sharing on the network.

Number of The number of kilobytes of data that the servent with the given IP address and
Kilobytes port is sharing on the network.
Shared

Pong descriplors are only sent in response to an incoming Ping descriptor. It is valid for more
than one Pong descriptor to be sent in response 1o a single Ping descriptor. This enables host
caches to send cached servent address information in response to a Ping request.

2: Application Layer 86

Query Message

Query (0x80)

Byleofiset 0

ini The mini speed (in kb d) of servents that should respond fo this
Speed A servent receiving a Query descrptor with a Minimum Speed fisld

ge.
nf n khis shanid anlv rasnnnd with a OvandHit if it is ahla tn commenicate at &

speed == n kb's

Search A nul {i.e. 0x00) terminated search string. The maximum length of this string i
Criteria bounded by the Payload_Length field of the descriptor header.

2: Application Layer 87

QueryHit Message

QueryHit (0x81)

el I 2 Il)
[i] 1 FIE) [T 0 mn n n+ G

Eyto offsat

Humber of The number of query hits in the result set (see below).

Hits

Port The port number on which the responding host can accept incoming

connections,
IF Address The IP address of the responding host.

This field is in big-endian format.
Speed The speed (in kb/second) of the responding host.

2: Application Layer 88

QueryHit Message (cont.)

Result Set A set of responses fo the comesponding Query. This set contains
Numnber_of_Hits slements, sach with the fallowing structurs.

File Index A number, assigned by the responding host, which is used fo
uniqualy identfy the fle malching the comasponding query.

File Size The size {in byfes) of the file whose index is File_inde:x.

File Name The double-nu (ie. Ox0000) ferminated name of the file
whose index is File_indes.

The size of the result sef is bounded by the size of the Payload_Length field in
the Descriptor Header,

2: Application Layer 89

Query Routing

Pang

Ping

I’lngl

Example 1. Ping/Pong Routing

Query Push
— —
-—
Hit
auery f lnn i} Jouery —= i-.nhf Lpusn
Push
File

Example 2. QuerylQueryHitPush Routing

2: Application Layer 90

File Download

GET /get/<File Index=/<File Name=/ HTTP/.0win
Connection: Keep-Alveirin

Range: bytes=0nn

UserAgent: Grutellalsin”

in

where <File Index= and <File Name> are one of the File IndexFile Name pairs from a QueryHit
descriptor's Result Set. For example, if the Result Set from a QueryHit descripior contained the
eniry

File Index | 2468

File Size | 4356789

File Name | Foobar mp3ld0u0g

2: Application Layer 91

Exploiting heterogeneity: Gnutella
v.2

0 Each peer is either a
supernode or assigned
to a supernode.
0 TCP connection between
peer and its group leader.
0 TCP connections between
some pairs of group
leaders. ¢
0 Supernode tracks the
content in all its

® ordinary peer

Gnutella v. 2: Querying

0 On connection client updates its supernode
with all its files

O Client sends keyword query to its
supernode

O Supernode responds with matches:

O Supernode forwards query to other
supernodes

O Client then selects files for downloading

2: Application Layer 93

children.
[Y —
raigring atonahips
ey oo
2: Application Layer 92

2: Application Layer

94

eMule connection setup

Client Server

Tt e Tanfect (Top; d Client Server

Iy
ogn d St v

. “annect (1Cp,
connact (TEPY— !

et Lo

" | timeout
~—belo anguy; || -

v
e

Connection startup

pisconnect ~{

ichange- b

-
Yaryg

L chang®-

Erdto -
v

2: Application Layer 95

Client Server

2: Application Layer

96

File Search

Client Sarver
Etart bme - 58
ACh reuesy
N
.. sparch el

P8 Sourpe,
—

gapves SIS~

Chapter 2: Application layer

sl SOUCES—
|, founds

End bme.
\J

Figure 2.5: File search sequence

2: Application Layer 97

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 23 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web
0 25 DNS server

2: Application Layer 98

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket APT

0 introduced in BSD4.1 UNIX,
1981

0 explicitly created, used,
released by apps

0 client/server paradigm

0 two types of transport
service via socket API:

0 unreliable datagram

0 reliable, byte stream-
oriented

— socket

a host-local,
application-created,
O5-controlled interface
(a “door") into which
application process can
both send and
receive messages to/from
another application
process

2: Application Layer 99

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

controlled by

contro!led.by application
appllcuflonI developer
developer
controlled by [[TCP with|¢——o——— s:z:::lil’;d bY
operating | [buffers internet
4 system
system | |variables 4
host or host or
server server

2: Application Layer 100

Socket programming with TCP

Client must contact server

[server process must first
be running

0 server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:

0 creating client-local TCP

socket

specifying IP address, port

number of server process

0 When client creates
socket: client TCP
establishes connection to
server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client
0 allows server to talk with
multiple clients
0 source port numbers
used to distinguish
clients (more in Chap 3)

application viewpoint
TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

2: Application Layer 101

Stream jargon

0 A stream is a sequence of
characters that flow into
or out of a process.

0 Aninput stream is
attached to some input
source for the process, eg,
keyboard or socket.

0 Anoufput stream is
attached to an output
source, eg, monitor or
socket.

2: Application Layer 102

Socket programming with TCP

keyboard moritor

Fhee
Client
process

Example client-server app:

1) client reads line from
standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

[iFromuser

—

output
stream

inFromServer

outToServer

client TCP

socket &

Sacket

tonetwork frominetwork

2: Application Layer 103

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

—
TCP
wait for incoming €= = = = = = — —p create socket, .
connection request connection setup ~ connect to hostid, port=x
connectionSocket = clientSocket =
Socket()

welcomeSocket.accept()
l send request using

read request from / clientSocket

connectionSocket

write reply to

connectionSocket | 0 reply from

1 clientSocket

close

connectionSocket close
clientSocket

g

2: Application Layer

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception

String sentence;
String modifiedSentence;

Create .
input stream BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Create
client socket, Socket clientSocket = new Socket("hostname", 6789);
connect fo server

Create DataOutputStream outToServer =
output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket
2: Application Layer 105

Example: Java client (TCP), cont.

input stream new BufferedReader(new

Create BufferedReader inFromServer =
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();
Send line .
to server outToServer.writeBytes(sentence + '\n');
Read line modifiedSentence = inFromServer.readLine();
from server.
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2: Application Layer 106

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

String clientSentence;
Create String capitalizedSentence;
welcoming socket

at port 6789

Wait, on welcoming while(true) {
socket for contact Socket connectionSocket = welcomeSocket.accept();

by client,

— ServerSocket welcomeSocket = new ServerSocket(6789);

. BufferedReader inFromClient =
Create inpuf new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket.

2: Application Layer 107

Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket|—

new DataOutputStream(connectionSocket.getOutputStream());
Read in line . . " ;

from socket| ™ clientSentence = inFromClient.readLine();
capitalizedSentence = clientSentence.toUpperCase() + '\n';

Werite out line| outToClient.writeBytes(capitalizedSentence);
to socket)
}

} End of while loop,
loop back and wait for
another client connection

2: Application Layer 108

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing

network applications (1 2.7 Socket programming
0 2.2 Web and HTTP with TCP
023 FTP 0 2.8 Socket programming
O 2.4 Electronic Mail with UDP

0 SMTP, POP3, IMAP 0 2.9 Building a Web
0 25DNS server

2: Application Layer 109

Socket programming with UDP

UDP: no “connection” between
client and server

0 no handshaking

0 sender explicitly attaches application viewpoint
IP address and port of) .
destination to each packet UDP provides unreliable transfer

of groups of bytes (“datagrams”)

O server must extract IP between client and server

address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

2: Application Layer 110

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

port=x, for clientSocket =

incoming request: DatagramSocket()

serverSocket =

DatagramSocket()

— Create, address (hostid, port=x,
/ send datagram request

read request from using clientSocket
serverSocket

write réply to

serverSocket \ PR
specifying client read reply from

host address, clientSocket
port number close l

clientSocket

2: Application Layer 111

Example: Java client (UDP)

Keyboard monitor
Client i
Input: receives
rocess
P packet (TCP
Output: sends ~_ recelve:i “byte
packet (TCP sent [y stream”)
"byte stream”) uop wop
packet g packet

client UDP

socket

tonetwork from network

2: Application Layer 112

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

Create

]—‘{
input stream BufferedReader inFromUser =

Cr‘eﬂfe:l new BufferedReader(new InputStreamReader(System.in));

client socket] DatagramSocket clientSocket = new DatagramSocket();

Translate _ . -
hosthame to IP InetAddress IPAddress = InetAddress.getByName("hostname");
address using DNS | e sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
2: Application Layer 113

Example: Java client (UDP), cont.

Create datagram|
with data-to-send,| DatagramPacket sendPacket =

length, IP addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram| clientSocket.send(sendPacket);
to servenr
DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);
Read datagram
from szgrvzr clientSocket.receive(receivePacket);

String modifiedSentence =

new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

2: Application Layer 114

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create
datagram socket

{
at port 9876, DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

Create space for]

received dc’rugrcm —— DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Receive| serverSocket.receive(receivePacket);
datagram|

2: Application Layer 115

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr .
port #, 01{|_‘InetAddress IPAddress = receivePacket.getAddress();

sender, —int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

— =
to send to client DatagramPacket sendPacket

new DatagramPacket(sendData, sendData.length, IPAddress,

. port);
Werite out
datagram serverSocket.send(sendPacket);
to socket| }
} End of while loop,

loop back and wait for

another datagram
2: Application Layer 116

Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P file sharing
network applications 7 2.7 Socket programming

0 app architectures with TCP

0 app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP
0 2.4 Electronic Mail 0 2.9 Building a Web

0 SMTP, POP3, IMAP server
0 25DNS

2: Application Layer 117

Building a simple Web server

handles one HTTP 0 after creating server,
request you cah request file

O accepts the request using a browser (eg IE
parses header explorer))
obtains requested file O see text for details
from server's file

system

creates HTTP response

message:

0 header lines + file

sends response to client

[m]

o O

[m]

[m}

2: Application Layer 118

Chapter 2: Summary
Our study of network apps now completel!

O Application architectures O specific protocols:

o client-server 0 HTTP
1 P2pP o FTP
* hybrid 0 SMTP, POP, IMAP
0 application service o DNs]
requirements: 0 socket programming
o reliability, bandwidth,
delay

0 Internet transport
service model

0 connection-oriented,
reliable: TCP

0 unreliable, datagrams: UDP
2: Application Layer 119

Chapter 2: Summary

Most importantly: learned about protocols

O typical request/reply
message exchange:

0 client requests info or
service

0 server responds with
data, status code
O message formats: fransfer
9 . iy “complexity at network
0 headers: fields giving edge”
info about data
0 data: info being
communicated

O

control vs. data msgs

0 in-band, out-of-band
0 centralized vs. decentralized
stateless vs. stateful
reliable vs. unreliable msg

o o

[

2: Application Layer 120

