
1

2: Application Layer 1

Chapter 2
Application Layer –
part 1

Computer Networking:
A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2004
J.F Kurose and K.W. Ross, All Rights Reserved

2: Application Layer 2

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 3

Chapter 2: Application Layer
Our goals:
❒ conceptual,

implementation
aspects of network
application protocols
❍ transport-layer

service models
❍ client-server

paradigm
❍ peer-to-peer

paradigm

❒ learn about protocols
by examining popular
application-level
protocols

❍ HTTP
❍ FTP
❍ SMTP / POP3 / IMAP
❍ DNS

❒ programming network
applications

❍ socket API

2: Application Layer 4

Some network apps

❒ E-mail
❒ Web
❒ Instant messaging
❒ Remote login
❒ P2P file sharing
❒ Multi-user network

games
❒ Streaming stored

video clips

❒ Internet telephone
❒ Real-time video

conference
❒ Massive parallel

computing

2: Application Layer 5

Creating a network app
Write programs that

❍ run on different end
systems and

❍ communicate over a
network.

❍ e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core

❍ Network core devices do
not function at app layer

❍ This design allows for
rapid app development

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 6

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2

2: Application Layer 7

Application architectures

❒ Client-server
❒ Peer-to-peer (P2P)
❒ Hybrid of client-server and P2P

2: Application Layer 8

Client-server archicture
server:

❍ always-on host
❍ permanent IP address
❍ server farms for scaling

clients:
❍ communicate with

server
❍ may be intermittently

connected
❍ may have dynamic IP

addresses
❍ do not communicate

directly with each other

2: Application Layer 9

Pure P2P architecture

❒ no always on server
❒ arbitrary end systems

directly communicate
❒ peers are intermittently

connected and change IP
addresses

❒ example: Gnutella

Highly scalable

But difficult to manage
2: Application Layer 10

Hybrid of client-server and P2P

Napster
❍ File transfer P2P
❍ File search centralized:

• Peers register content at central server
• Peers query same central server to locate content

Instant messaging
❍ Chatting between two users is P2P
❍ Presence detection/location centralized:

• User registers its IP address with central server
when it comes online

• User contacts central server to find IP addresses of
buddies

2: Application Layer 11

Processes communicating

Process: program running
within a host.

❒ within same host, two
processes communicate
using inter-process
communication (defined
by OS).

❒ processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

❒ Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 12

Sockets

❒ process sends/receives
messages to/from its
socket

❒ socket analogous to door
❍ sending process shoves

message out door
❍ sending process relies on

transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

❒ API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

3

2: Application Layer 13

Addressing processes
❒ For a process to

receive messages, it
must have an identifier

❒ A host has a unique32-
bit IP address

❒ Q: does the IP address
of the host on which
the process runs
suffice for identifying
the process?

❒ Answer: No, many
processes can be
running on same host

❒ Identifier includes
both the IP address
and port numbers
associated with the
process on the host.

❒ Example port numbers:
❍ HTTP server: 80
❍ Mail server: 25

❒ More on this later

2: Application Layer 14

App-layer protocol defines

❒ Types of messages
exchanged, eg, request
& response messages

❒ Syntax of message
types: what fields in
messages & how fields
are delineated

❒ Semantics of the
fields, ie, meaning of
information in fields

❒ Rules for when and
how processes send &
respond to messages

Public-domain protocols:
❒ defined in RFCs
❒ allows for

interoperability
❒ eg, HTTP, SMTP
Proprietary protocols:
❒ eg, KaZaA

2: Application Layer 15

What transport service does an app need?

Data loss
❒ some apps (e.g., audio) can

tolerate some loss
❒ other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
❒ some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
❒ some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

❒ other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 16

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 17

Internet transport protocols services

TCP service:
❒ connection-oriented: setup

required between client and
server processes

❒ reliable transport between
sending and receiving process

❒ flow control: sender won’t
overwhelm receiver

❒ congestion control: throttle
sender when network
overloaded

❒ does not provide: timing,
minimum bandwidth
guarantees

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 18

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

4

2: Application Layer 19

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❍ app architectures
❍ app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 20

Web and HTTP

First some jargon
❒ Web page consists of objects
❒ Object can be HTML file, JPEG image, Java

applet, audio file,…
❒ Web page consists of base HTML-file which

includes several referenced objects
❒ Each object is addressable by a URL
❒ Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 21

HTTP overview

HTTP: hypertext
transfer protocol

❒ Web’s application layer
protocol

❒ client/server model
❍ client: browser that

requests, receives,
“displays” Web objects

❍ server: Web server
sends objects in
response to requests

❒ HTTP 1.0: RFC 1945
❒ HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 22

HTTP overview (continued)

Uses TCP:
❒ client initiates TCP

connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

❒ TCP connection closed

HTTP is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2: Application Layer 23

HTTP connections

Nonpersistent HTTP
❒ At most one object is

sent over a TCP
connection.

❒ HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
❒ Multiple objects can

be sent over single
TCP connection
between client and
server.

❒ HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 24

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

5

2: Application Layer 25

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 26

Response time modeling
Definition of RRT: time to

send a small packet to
travel from client to
server and back.

Response time:
❒ one RTT to initiate TCP

connection
❒ one RTT for HTTP

request and first few
bytes of HTTP response
to return

❒ file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

2: Application Layer 27

Persistent HTTP

Nonpersistent HTTP issues:
❒ requires 2 RTTs per object
❒ OS must work and allocate

host resources for each TCP
connection

❒ but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
❒ server leaves connection

open after sending response
❒ subsequent HTTP messages

between same client/server
are sent over connection

Persistent without pipelining:
❒ client issues new request

only when previous
response has been received

❒ one RTT for each
referenced object

Persistent with pipelining:
❒ default in HTTP/1.1
❒ client sends requests as

soon as it encounters a
referenced object

❒ as little as one RTT for all
the referenced objects

2: Application Layer 28

HTTP request message

❒ two types of HTTP messages: request, response
❒ HTTP request message:

❍ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 29

HTTP request message: general format

2: Application Layer 30

Uploading form input

Post method:
❒ Web page often

includes form input
❒ Input is uploaded to

server in entity body

URL method:
❒ Uses GET method
❒ Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

6

2: Application Layer 31

Method types

HTTP/1.0
❒ GET
❒ POST
❒ HEAD

❍ asks server to leave
requested object out of
response

HTTP/1.1
❒ GET, POST, HEAD
❒ PUT

❍ uploads file in entity
body to path specified
in URL field

❒ DELETE
❍ deletes file specified in

the URL field

2: Application Layer 32

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

2: Application Layer 33

HTTP response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Permanently
❍ requested object moved, new location specified later in

this message (Location:)
400 Bad Request

❍ request message not understood by server
404 Not Found

❍ requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 35

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line in

the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user’s host and managed
by user’s browser

4) back-end database at
Web site

Example:
❍ Susan access Internet

always from same PC
❍ She visits a specific e-

commerce site for first
time

❍ When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for
ID

2: Application Layer 36

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

7

2: Application Layer 37

Cookies (continued)
What cookies can bring:
❒ authorization
❒ shopping carts
❒ recommendations
❒ user session state

(Web e-mail)

Cookies and privacy:
❒ cookies permit sites to

learn a lot about you
❒ you may supply name

and e-mail to sites
❒ search engines use

redirection & cookies
to learn yet more

❒ advertising companies
obtain info across
sites

aside

2: Application Layer 38

Web caches (proxy server)

❒ user sets browser: Web
accesses via cache

❒ browser sends all HTTP
requests to cache

❍ object in cache: cache
returns object

❍ else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

2: Application Layer 39

More about Web caching

❒ Cache acts as both client
and server

❒ Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
❒ Reduce response time for

client request.
❒ Reduce traffic on an

institution’s access link.
❒ Internet dense with caches

enables “poor” content
providers to effectively
deliver content (but so
does P2P file sharing)

2: Application Layer 40

Caching example
Assumptions
❒ average object size = 100,000

bits
❒ avg. request rate from

institution’s browsers to origin
servers = 15/sec

❒ delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 100%
❒ total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 41

Caching example (cont)
Possible solution
❒ increase bandwidth of access

link to, say, 10 Mbps
Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 15%
❒ Total delay = Internet delay +

access delay + LAN delay
= 2 sec + msecs + msecs

❒ often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 42

Caching example (cont)

Install cache
❒ suppose hit rate is .4
Consequence
❒ 40% requests will be

satisfied almost immediately
❒ 60% requests satisfied by

origin server
❒ utilization of access link

reduced to 60%, resulting in
negligible delays (say 10
msec)

❒ total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
milliseconds < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

8

2: Application Layer 43

Conditional GET

❒ Goal: don’t send object if
cache has up-to-date cached
version

❒ cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

❒ server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

cache server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

2: Application Layer 44

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 45

FTP: the file transfer protocol

❒ transfer file to/from remote host
❒ client/server model

❍ client: side that initiates transfer (either to/from
remote)

❍ server: remote host
❒ ftp: RFC 959
❒ ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 46

FTP: separate control, data connections

❒ FTP client contacts FTP
server at port 21, specifying
TCP as transport protocol

❒ Client obtains authorization
over control connection

❒ Client browses remote
directory by sending
commands over control
connection.

❒ When server receives a
command for a file transfer,
the server opens a TCP data
connection to client

❒ After transferring one file,
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

❒ Server opens a second TCP
data connection to transfer
another file.

❒ Control connection: “out of
band”

❒ FTP server maintains “state”:
current directory, earlier
authentication

2: Application Layer 47

FTP commands, responses

Sample commands:
❒ sent as ASCII text over

control channel
❒ USER username
❒ PASS password
❒ LIST return list of file in

current directory
❒ RETR filename retrieves

(gets) file
❒ STOR filename stores

(puts) file onto remote
host

Sample return codes
❒ status code and phrase (as

in HTTP)
❒ 331 Username OK,

password required
❒ 125 data connection

already open;
transfer starting

❒ 425 Can’t open data
connection

❒ 452 Error writing
file

2: Application Layer 48

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

9

2: Application Layer 49

Electronic Mail

Three major components:
❒ user agents
❒ mail servers
❒ simple mail transfer

protocol: SMTP

User Agent
❒ a.k.a. “mail reader”
❒ composing, editing, reading

mail messages
❒ e.g., Eudora, Outlook, elm,

Netscape Messenger
❒ outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 50

Electronic Mail: mail servers

Mail Servers
❒ mailbox contains incoming

messages for user
❒ message queue of outgoing

(to be sent) mail messages
❒ SMTP protocol between mail

servers to send email
messages

❍ client: sending mail
server

❍ “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 51

Electronic Mail: SMTP [RFC 2821]

❒ uses TCP to reliably transfer email message from client
to server, port 25

❒ direct transfer: sending server to receiving server
❒ three phases of transfer

❍ handshaking (greeting)
❍ transfer of messages
❍ closure

❒ command/response interaction
❍ commands: ASCII text
❍ response: status code and phrase

❒ messages must be in 7-bit ASCII

2: Application Layer 52

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 53

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

2: Application Layer 54

Try SMTP interaction for yourself:

❒ telnet servername 25
❒ see 220 reply from server
❒ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

10

2: Application Layer 55

SMTP: final words

❒ SMTP uses persistent
connections

❒ SMTP requires message
(header & body) to be in 7-
bit ASCII

❒ SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:
❒ HTTP: pull
❒ SMTP: push

❒ both have ASCII
command/response
interaction, status codes

❒ HTTP: each object
encapsulated in its own
response msg

❒ SMTP: multiple objects
sent in multipart msg

2: Application Layer 56

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

❒ header lines, e.g.,
❍ To:
❍ From:
❍ Subject:
different from SMTP

commands!
❒ body

❍ the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 57

Message format: multimedia extensions

❒ MIME: multimedia mail extension, RFC 2045, 2056
❒ additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 58

Mail access protocols

❒ SMTP: delivery/storage to receiver’s server
❒ Mail access protocol: retrieval from server

❍ POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

❍ IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

❍ HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 59

POP3 protocol

authorization phase
❒ client commands:

❍ user: declare username
❍ pass: password

❒ server responses
❍ +OK

❍ -ERR

transaction phase, client:
❒ list: list message numbers
❒ retr: retrieve message by

number
❒ dele: delete
❒ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 60

POP3 (more) and IMAP
More about POP3
❒ Previous example uses

“download and delete”
mode.

❒ Bob cannot re-read e-
mail if he changes
client

❒ “Download-and-keep”:
copies of messages on
different clients

❒ POP3 is stateless
across sessions

IMAP
❒ Keep all messages in

one place: the server
❒ Allows user to

organize messages in
folders

❒ IMAP keeps user state
across sessions:

❍ names of folders and
mappings between
message IDs and folder
name

11

2: Application Layer 61

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 62

DNS: Domain Name System

People: many identifiers:
❍ SSN, name, passport #

Internet hosts, routers:
❍ IP address (32 bit) -

used for addressing
datagrams

❍ “name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
❒ distributed database

implemented in hierarchy of
many name servers

❒ application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

❍ note: core Internet
function, implemented as
application-layer protocol

❍ complexity at network’s
“edge”

2: Application Layer 63

DNS
Why not centralize DNS?
❒ single point of failure
❒ traffic volume
❒ distant centralized

database
❒ maintenance

doesn’t scale!

DNS services
❒ Hostname to IP

address translation
❒ Host aliasing

❍ Canonical and alias
names

❒ Mail server aliasing
❒ Load distribution

❍ Replicated Web
servers: set of IP
addresses for one
canonical name

2: Application Layer 64

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
❒ Client queries a root server to find com DNS

server
❒ Client queries com DNS server to get amazon.com

DNS server
❒ Client queries amazon.com DNS server to get IP

address for www.amazon.com

2: Application Layer 65

DNS: Root name servers
❒ contacted by local name server that can not resolve name
❒ root name server:

❍ contacts authoritative name server if name mapping not known
❍ gets mapping
❍ returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

2: Application Layer 66

TLD and Authoritative Servers

❒ Top-level domain (TLD) servers: responsible
for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.
❍ Network solutions maintains servers for com TLD
❍ Educause for edu TLD

❒ Authoritative DNS servers: organization’s
DNS servers, providing authoritative
hostname to IP mappings for organization’s
servers (e.g., Web and mail).
❍ Can be maintained by organization or service

provider

12

2: Application Layer 67

Local Name Server

❒ Does not strictly belong to hierarchy
❒ Each ISP (residential ISP, company,

university) has one.
❍ Also called “default name server”

❒ When a host makes a DNS query, query is
sent to its local DNS server
❍ Acts as a proxy, forwards query into hierarchy.

2: Application Layer 68

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

Example

❒ Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

2: Application Layer 69

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serve

3

Recursive queries
recursive query:
❒ puts burden of name

resolution on
contacted name
server

❒ heavy load?

iterated query:
❒ contacted server

replies with name of
server to contact

❒ “I don’t know this
name, but ask this
server”

2: Application Layer 70

DNS: caching and updating records

❒ once (any) name server learns mapping, it caches
mapping
❍ cache entries timeout (disappear) after some

time
❍ TLD servers typically cached in local name

servers
• Thus root name servers not often visited

❒ update/notify mechanisms under design by IETF
❍ RFC 2136
❍ http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 71

DNS records
DNS: distributed db storing resource records (RR)

❒ Type=NS
❍ name is domain (e.g.

foo.com)
❍ value is IP address of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

❒ Type=A
❍ name is hostname
❍ value is IP address

❒ Type=CNAME
❍ name is alias name for some

“cannonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

❍ value is cannonical name

❒ Type=MX
❍ value is name of mailserver

associated with name

2: Application Layer 72

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
❒ identification: 16 bit #

for query, reply to query
uses same #

❒ flags:
❍ query or reply
❍ recursion desired
❍ recursion available
❍ reply is authoritative

13

2: Application Layer 73

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 74

Inserting records into DNS

❒ Example: just created startup “Network Utopia”
❒ Register name networkuptopia.com at a registrar

(e.g., Network Solutions)
❍ Need to provide registrar with names and IP addresses of

your authoritative name server (primary and secondary)
❍ Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

❒ Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

❒ How do people get the IP address of your Web site?

2: Application Layer 75

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❍ app architectures
❍ app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 76

P2P file sharing

Example
❒ Alice runs P2P client

application on her
notebook computer

❒ Intermittently
connects to Internet;
gets new IP address
for each connection

❒ Asks for “Hey Jude”
❒ Application displays

other peers that have
copy of Hey Jude.

❒ Alice chooses one of
the peers, Bob.

❒ File is copied from
Bob’s PC to Alice’s
notebook: HTTP

❒ While Alice downloads,
other users uploading
from Alice.

❒ Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2: Application Layer 77

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
❍ IP address
❍ content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2: Application Layer 78

P2P: problems with centralized directory

❒ Single point of failure
❒ Performance

bottleneck
❒ Copyright

infringement

file transfer is
decentralized, but
locating content is
highly decentralized

14

2: Application Layer 79

Query flooding: Gnutella

❒ fully distributed
❍ no central server

❒ public domain protocol
❒ many Gnutella clients

implementing protocol

overlay network: graph
❒ edge between peer X

and Y if there’s a TCP
connection

❒ all active peers and
edges is overlay net

❒ Edge is not a physical
link

❒ Given peer will
typically be connected
with < 10 overlay
neighbors

2: Application Layer 80

Gnutella Messages

2: Application Layer 81

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP❒ Query message

sent over existing TCP
connections
❒ peers forward
Query message
❒ QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 82

Gnutella Connection Setup

2: Application Layer 83

Gnutella Message Header

2: Application Layer 84

Gnutella Message Header (Cont.)

15

2: Application Layer 85

Ping Message

2: Application Layer 86

Pong Message

2: Application Layer 87

Query Message

2: Application Layer 88

QueryHit Message

2: Application Layer 89

QueryHit Message (cont.)

2: Application Layer 90

Query Routing

16

2: Application Layer 91

File Download

2: Application Layer 92

Exploiting heterogeneity: Gnutella
v. 2
❒ Each peer is either a

supernode or assigned
to a supernode.

❍ TCP connection between
peer and its group leader.

❍ TCP connections between
some pairs of group
leaders.

❒ Supernode tracks the
content in all its
children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 93

Gnutella v. 2: Querying

❒ On connection client updates its supernode
with all its files

❒ Client sends keyword query to its
supernode

❒ Supernode responds with matches:
❒ Supernode forwards query to other

supernodes
❒ Client then selects files for downloading

2: Application Layer 94

eMule

2: Application Layer 95

eMule connection setup

2: Application Layer 96

Connection startup

17

2: Application Layer 97

File Search

2: Application Layer 98

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 99

Socket programming

Socket API
❒ introduced in BSD4.1 UNIX,

1981
❒ explicitly created, used,

released by apps
❒ client/server paradigm
❒ two types of transport

service via socket API:
❍ unreliable datagram
❍ reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 100

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 101

Socket programming with TCP
Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process
❒ When client creates

socket: client TCP
establishes connection to
server TCP

❒ When contacted by client,
server TCP creates new
socket for server process to
communicate with client

❍ allows server to talk with
multiple clients

❍ source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 102

Stream jargon

❒ A stream is a sequence of
characters that flow into
or out of a process.

❒ An input stream is
attached to some input
source for the process, eg,
keyboard or socket.

❒ An output stream is
attached to an output
source, eg, monitor or
socket.

18

2: Application Layer 103

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network
in

Fr
om

S
er

ve
r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2: Application Layer 104

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 105

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 106

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 107

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 108

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

19

2: Application Layer 109

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 110

Socket programming with UDP

UDP: no “connection” between
client and server

❒ no handshaking
❒ sender explicitly attaches

IP address and port of
destination to each packet

❒ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 111

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

2: Application Layer 112

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network
re

ce
iv

eP
ac

ke
t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

2: Application Layer 113

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 114

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

20

2: Application Layer 115

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 116

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 117

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❍ app architectures
❍ app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

❍ SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P file sharing
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 118

Building a simple Web server

❒ handles one HTTP
request

❒ accepts the request
❒ parses header
❒ obtains requested file

from server’s file
system

❒ creates HTTP response
message:

❍ header lines + file
❒ sends response to client

❒ after creating server,
you can request file
using a browser (eg IE
explorer)

❒ see text for details

2: Application Layer 119

Chapter 2: Summary

❒ Application architectures
❍ client-server
❍ P2P
❍ hybrid

❒ application service
requirements:

❍ reliability, bandwidth,
delay

❒ Internet transport
service model

❍ connection-oriented,
reliable: TCP

❍ unreliable, datagrams: UDP

Our study of network apps now complete!
❒ specific protocols:

❍ HTTP
❍ FTP
❍ SMTP, POP, IMAP
❍ DNS

❒ socket programming

2: Application Layer 120

Chapter 2: Summary

❒ typical request/reply
message exchange:

❍ client requests info or
service

❍ server responds with
data, status code

❒ message formats:
❍ headers: fields giving

info about data
❍ data: info being

communicated

Most importantly: learned about protocols

❒ control vs. data msgs
❍ in-band, out-of-band

❒ centralized vs. decentralized
❒ stateless vs. stateful
❒ reliable vs. unreliable msg

transfer
❒ “complexity at network

edge”

