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1 Introduction

Today we will return to the motif finding problem, in lecture 10 we have built an HMM model that
describes a sequence with one or many occurrence of the motif, and estimated the model’s parameters
using the EM algorithm. Today we will show a different approach for solving the motif finding problem
using Markov chain Monte Carlo (MCMC) method.

We have a probability distributionP (x), we would like to compute the expectation of a function on
a data setEp[f(X)]. Suppose that we can generate i.i.d samplesx1, ..., xn from P (x) then

Ep[f(X)] ≈
1

n

n
∑

i=1

f(xi) (1)

is a MC estimator ofEp[f(x)], the next question is how to draw i.i.d samples from someP (x)?

2 Markov Chains

Before introducing the Metropolis-Hastings algorithm and the Gibbs sampler,a few introductory com-
ments on Markov chains.

Markov Process: LetX(t) denote the value of a random variable at timet, and let thestate spacerefer
to the range of possible X values. The random variable is aMarkov process if the transition probabilities
between different values in the state space depend only on the random variables current state, i.e.,

Pr(X(t+1) = st+1|X
(t) = st, ..., X

(1) = s1) = Pr(X(t+1) = st+1|X
(t) = st) (2)

Markov Chain: A Markov chainis a sequence of random variablesX(1), ...X(n) with the Markov
property (each state depends only on the previous state). A particular chain is defined by itstransition
probabilities, Pr(i, j) = Pr(i → j), which is the probability that a process at state spacesi moves to
statesj in a single step,

P (i, j) = P (i → j) = Pr(X(t+1) = sj |X
(t) = si) (3)

Homogeneous Markov Chain: A markov chain is calledhomogeneous(Markov chains with homo-
geneous transition probabilities) if transition from one state to another is not time-dependent, Formally

Pr(X(t+1)|X(t)) = Pr(X(t′+1)|X(t′)) (4)

for all t, t′.
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irreducible A Markov chain is said to beirreducible if it is possible to get to any state from any state
with a positive probability

Acyclic process A state is calledperiodic with periodk if any return to statei must occur in some
multiple ofk steps andk is the largest number with this property

∃k Pr(X(n+d) = s|X(n) = s) > 0 ⇐⇒ d mod k = 0

A process is calledacyclic if for every stateX, X is not periodic. Put another way, the chain is not
forced into some cycle of fixed length between certain states.

Definition 2.1 Ergodic Markov chain - A Markov chain will be calledergodic if it is homogeneous,
acyclic and irreducible.

3 Sampling using Markov Chain

Our problem is to obtain samples from some complex probability distributionp(x). In order to achieve
that we will build a Markov Chain with some transition probabilityQ(X(t)|X(t+1)) that whent → ∞
converge to somestationary distribution

Q(X(t)|X(0)) −→t→∞ Q∞(X(t)) s.t. P (X = x) = Q∞(X(t) = x) (5)

In order to use markov chain for sampling we want to reach a steady state that will represent our
probability distribution, we’ll denote this probability asQ∞(X = x) = P (X = x) (stationary distribu-
tion).

Stationary Distribution: A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at the time n is called astationary distribution. The conditions for a stationary
distribution is that the chain isirreducible andaperiodic (ergodic). When a chain is periodic, it can
cycle in a deterministic fashion between states and hence never settles down toa stationary distribution.

A sufficient condition for a unique stationary distribution is that thedetailed balanceequation holds,
for big enought the probability to reachXt and transit toXt+1 is:

P (X(t), X(t+1)) = Q∞(Xt)Q(X(t+1)|X(t)) (6)

A Markov process is said to showdetailed balance if the transition rates between each pair of states
a andb in the state space obey

Q(X(t) = a|X(t+1) = b) · Q∞(Xt = a) = Q(X(t) = b|X(t+1) = a) · Q∞(Xt = b) (7)

Reversible Markov chains: A reversible Markov chainis a process in which you can generate the
same trajectory whether you walk forward or backward in the process. Another way of phrasing it is
a process in which we can’t tell the order between states, if there are two given states we can’t tell
which one came before the other (diffusion in a solution is an example for such a reversible process). In
reversible Markov chains:

P (X = a)Q(X(t+1) = b|X(t) = a) = P (X = b)Q(X(t+1) = a|X(t) = b) (8)

so the ratio between the stationary probability of two states is:

P (X = a)

P (X = b)
=

Q(X(t+1) = a|X(t) = b)

Q(X(t+1) = b|X(t) = a)
(9)
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if this holds for everya andb then thestationary distributionis the only distribution the holds this
condition, and we have,

P (X = x) = Q∞(X(t) = x) =⇒ P = Q∞ (10)

We will introduce two methods to construct a Markov Chain (defining Q) that has the desired distri-
bution as its stationary distribution.

4 Metropolis-Hastings Algorithm

Our goal is to draw samples from some distributionp(x) wherep(x) = f(x)/K. the normalizing con-
stant K may not be known, and very difficult to compute. The Metropolis-Hastings algorithm (Metropo-
lis and Ulam 1949, Metropolis et al. 1953, Hastings 1970) generates a sequence of draws from this
distribution is as follows:

4.1 The Algorithm

1. Specify an initial valueθ(0) satisfyingf(θ(0)) > 0.

2. Repeat fort = 1, 2, ..., M

(a) Using currentθ(t) value, sample a candidate pointθ′ from some proposal distributionr(θ′|θ(t)).
This distribution is also referred to as the jumping or candidate-generating distribution. The
only restriction on the proposal density in the Metropolis algorithm is that it is symmetric,
i.e.,r(a|b) = r(b|a).

(b) Sampleq ∼ U(0, 1).

(c) Letθ(t+1) =







θ′, if P (θ(t))r(θ′|θ(t))

P (θ′)r(θ(t)|θ′)
> q ;

θ(t), othrerwise.

3. Return the valuesθ(1), θ(2), ..., θ(M)

We can summarize the Metropolis sampling as first computing

α(b|a) = min(
P (b)r(a|b)

P (a)r(b|a)
, 1) (11)

and then accepting a candidate point with probabilityα (theprobability of a move). This generates
a Markov chain(θ(0), ..., θ(k), ...) as the transition probabilities fromθ(t) to θ(t+1) depends only onθ(t)

and not(θ(0), ..., θ(t−1)). Following a sufficientburn-in period (of, say,k steps), the chain approaches
its stationary distribution and samples from the vector(θ(k+1), ..., θ(k+n)) are samples fromp(x).

Metropolis-Hasting Sampling as a Markov Chain To demonstrate that the Metropolis-Hasting sam-
pling generates a Markov chain whose equilibrium density is that candidate densityp(x), it is sufficient
to show that the Metropolis-Hasting transition probability satisfy the detailed balance equation with
p(x).

Using the Metropolis-Hasting algorithm, we sample from,

Q(b|a) = r(b|a)α(b|a) = r(b|a) · min(1,
P (b)r(a|b)

P (a)r(b|a)
) (12)
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Thus if the transition probability satisfiesP (X = a)Q(X(t+1) = b|X(t) = a) = P (X = b)Q(X(t+1) =
a|X(t) = b) then that stationary distribution corresponds to draws from the target distribution. We as-
sume w.l.o.g that(1 < P (b)r(a|b)

P (a)r(b|a)) for a 6= b

Q(b|a)

Q(a|b)
=

r(b|a) · P (b)r(a|b)
P (a)r(b|a)

r(a|b) · 1
=

r(b|a)P (b)r(a|b)

r(a|b)P (a)r(b|a)
=

P (b)

P (a)
(13)

and the detailed balance equation holds.

5 Gibbs Sampling

The Gibbs sampler (introduced in the context of image processing by Geman and Geman 1984), is a
special case of Metropolis-Hastings sampling wherein the random value is always accepted. The task
remains to specify how to construct a Markov Chain whose values converge to the target distribution.

We will present this algorithm with themotif finding problem, Lets first recall the motif finding prob-
lem: given a set ofn DNA sequences each of lengtht, find the profile that maximizes the consensus
score.

5.1 Algorithm

1. Input~a =< a1, ..., an >

2. Repeat fort = 1, 2, ..., M

(a) Sample random position in the arrayi ∼ r(n)

(b) Set~b =< b1, ..., bn > s.t.

i. bj = aj if j 6= i

ii. bi ∼ P (Xi|X1 = a1, ..., Xi−1 = ai−1, Xi+1 = ai+1, ..., Xn = an)

3. Return~b =< b1, ..., bn >

This algorithm produces detailed balanced Markov chains. We are interested only in transitions from
~a to~b wherea 6= b and when~a and~b differ only in one coordinate (result of the Gibbs algorithm).

Denote~a−i =< a1, ..., ai−1, ai+1, ..., an >

Q(b|a) = r(i)P (Xi = bi| ~X−i = ~a−i) (14)

Q(a|b) = r(i)P (Xi = ai| ~X−i = ~b−i) (15)

so the ratio between the stationary probability of two states is:

Q(b|a)

Q(a|b)
=

P (Xi = bi| ~X−i = ~a−i)

P (Xi = ai| ~X−i = ~b−i)
(16)

since~a−i = ~b−i,

Q(b|a)

Q(a|b)
=

P (Xi = bi| ~X−i = ~b−i) · P ( ~X−i = ~b−i)

P (Xi = ai| ~X−i = ~a−i) · P ( ~X−i = ~a−i)
=

P (~b)

P (~a)
(17)
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The Gibbs sampler is somewhat easier to implement than the Metropolis-Hasting algorithm since we
don’t have to create the proposal distribution. Furthermore, computingp(x1|x2..xn) can be done using
the equation

p(x1|x2..xn) =
p(x1..xn)

∑

x′

1
p(x′

1, x2..xn)

Most of the times the numerator and the denominator can be expressed as a product and then most of
the elements will be reduced.

A sketch algorithm for the motif finding problem

• Initialization :

– Select random locations in sequencesx1, ..., xN

– Compute an initial model M from these locations

• Sampling Iterations:

– Remove one sequencexi

– Recalculate model

– Pick a new location of motif inxi according to the model
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