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1 Introduction

Today we will return to the motif finding problem, in lecture 10 we have built anNHklodel that
describes a sequence with one or many occurrence of the motif, and edtihmat@odel’s parameters
using the EM algorithm. Today we will show a different approach for sgltire motif finding problem
using Markov chain Monte Carlo (MCMC) method.

We have a probability distributio?(x), we would like to compute the expectation of a function on
a data set’,[f(X)]. Suppose that we can generate i.i.d samples., z,, from P(x) then

B~ 3 ) @
i=1

is a MC estimator of,, [ f ()], the next question is how to draw i.i.d samples from sdnie)?

2 Markov Chains

Before introducing the Metropolis-Hastings algorithm and the Gibbs sanaptew introductory com-
ments on Markov chains.

Markov Process: Let X ®) denote the value of a random variable at timand let thestate spaceaefer
to the range of possible X values. The random variableMsekov process if the transition probabilities
between different values in the state space depend only on the randaiviescurrent state, i.e.,

PT(X(HI) = SHl\X(t) =5 ... xM = s1) = PT(X(HI) = st+1|X(t) = 5) (2)

Markov Chain: A Markov chainis a sequence of random variabl&$Y), ... X (") with the Markov
property (each state depends only on the previous state). A particaliarishdefined by it¢ransition

probabilities, Pr(i,j) = Pr(i — j), which is the probability that a process at state spageoves to
states; in a single step,

P(i,j) = P(i — j) = Pr(X®D = 5;| X = g;) (3)

Homogeneous Markov Chain: A markov chain is callethomogeneou@viarkov chains with homo-
geneous transition probabilities) if transition from one state to another is notigpendent, Formally

Pr(X®D| X Oy = pr(x @+ x 1)) (4)

for all ¢, ¢'.
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irreducible A Markov chain is said to b&reducibleif it is possible to get to any state from any state
with a positive probability

Acyclic process A state is callecperiodic with period & if any return to staté must occur in some
multiple of k steps and: is the largest number with this property

e Pr(X0H) =g XM =) >0 < dmod k=0

A process is calle@cyclicif for every stateX, X is not periodic. Put another way, the chain is not
forced into some cycle of fixed length between certain states.

Definition 2.1 Ergodic Markov chain - A Markov chain will be callegrgodicif it is homogeneous,
acyclic and irreducible.

3 Sampling using Markov Chain

Our problem is to obtain samples from some complex probability distribwtion In order to achieve
that we will build a Markov Chain with some transition probabiligf X ¥ | X (*+1)) that whent — oo
converge to somstationary distribution

Q(X(t)|X(0)) _t—oo Q“(X(t)) st. P(X=ux)= Q"O(X(t) =) %)

In order to use markov chain for sampling we want to reach a steady statwilh@present our
probability distribution, we’ll denote this probability & (X = x) = P(X = z) (stationary distribu-
tion).

Stationary Distribution: A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at the time n is callestationary distribution The conditions for a stationary
distribution is that the chain isreducible andaperiodic (ergodig. When a chain is periodic, it can
cycle in a deterministic fashion between states and hence never settles dostationary distribution.

A sufficient condition for a unique stationary distribution is thatdieéailed balanceequation holds,
for big enought the probability to reactX; and transit taX;, 1 is:

P(XW, X)) = @*(X)Q(X VX 1) (6)

A Markov process is said to shaetailed balance if the transition rates between each pair of states
a andb in the state space obey

QXY = al X =1) - Q*(Xy = a) = QXU =X =0) . Q¥ (X, =) (7)

Reversible Markov chains: A reversible Markov chairis a process in which you can generate the
same trajectory whether you walk forward or backward in the processth&r way of phrasing it is

a process in which we can't tell the order between states, if there areiten gtates we can't tell
which one came before the other (diffusion in a solution is an example forsteversible process). In
reversible Markov chains:

P(X =a)QX®D = p|Xx® = ) = P(X = b)Q(XTFV = ¢|X® =) (8)

so the ratio between the stationary probability of two states is:

P(X
P(X

) _ QX" =alX®) =1b)

a
b) ~ QXE = b|XO = q) ©)
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if this holds for everys andb then thestationary distributionis the only distribution the holds this
condition, and we have,

PX=2)=Q°XW=2) — P=Q> (10)

We will introduce two methods to construct a Markov Chain (defining Q) thatthe desired distri-
bution as its stationary distribution.

4 Metropolis-Hastings Algorithm

Our goal is to draw samples from some distributige) wherep(z) = f(x)/K. the normalizing con-
stant K may not be known, and very difficult to compute. The Metropolistidgs algorithm (Metropo-
lis and Ulam 1949, Metropolis et al. 1953, Hastings 1970) generatesugrsas of draws from this
distribution is as follows:

4.1 The Algorithm
1. Specify an initial valu@©®) satisfyingf(6() > 0
2. Repeatfot=1,2,.... M

(a) Using currenf(® value, sample a candidate pofthfrom some proposal distributior{’|#®)).
This distribution is also referred to as the jumping or candidate-generatimgpdi®n. The
only restriction on the proposal density in the Metropolis algorithm is that itnsnsgtric,
i.e.,r(alb) = r(bla).

(b) Sample; ~ U(0,1).

e POO)r(o'10M) .
© Letot+y = O T B gmm > ¢
6t othrerwise.

3. Return the valueg™®), 92 ... g(M)

We can summarize the Metropolis sampling as first computing

P(b)r(alb)

Playr ()" o

a(bla) = min(
and then accepting a candidate point with probabilifghe probability of a move). This generates
a Markov chain#®, ... #%) ) as the transition probabilities froi*) to #+1) depends only oA(*)
and not(A(©), ..., #(*=1). Following a sufficienburn-in period (of, say,k steps), the chain approaches
its stationary distribution and samples from the ve¢gst* b, ..., (*+")) are samples from(z).

Metropolis-Hasting Sampling as a Markov Chain To demonstrate that the Metropolis-Hasting sam-
pling generates a Markov chain whose equilibrium density is that candidatétgp (), it is sufficient
to show that the Metropolis-Hasting transition probability satisfy the detailechbalaquation with
p(z).

Using the Metropolis-Hasting algorithm, we sample from,

wazrw@awwzrmw»mMLpg> (12)
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Thus if the transition probability satisfigy X = a)Q(X ) = p| X" = ¢) = P(X = b)Q(XHD) =
a|X®) = p) then that stationary distribution corresponds to draws from the targeibdistn. We as-

sume w.l.o.g thatl < 5((3:((2&) fora #b

Q(bla) _ (bla) - 5TiGs _ r(bla)P®)r(alt) _ P() 13
Qualb) ~  rlab)-1  rlab)P(@r(la)  Pla)

and the detailed balance equation holds.

5 Gibbs Sampling

The Gibbs sampler (introduced in the context of image processing by GemiaBeman 1984), is a
special case of Metropolis-Hastings sampling wherein the random vallwagsaaccepted. The task
remains to specify how to construct a Markov Chain whose values agpateithe target distribution.

We will present this algorithm with thenotif finding problemLets first recall the motif finding prob-
lem: given a set oh, DNA sequences each of lengthfind the profile that maximizes the consensus
score.

5.1 Algorithm
1. Inputd =< ay, ..., an >
2. Repeatfot =1,2,.... M
(a) Sample random position in the array r(n)
(b) Seth =< by, ..., b, > s.t.
i bj=a; if j#i
|| bz ~ P(XZ‘Xl = a, ---7Xi—1 = Q;—1, Xi+1 = Q41 -y Xn = an)
3. Returnb =< b1y .y by >
This algorithm produces detailed balanced Markov chains. We are itegresly in transitions from
a to b wherea # b and wheni andb differ only in one coordinate (result of the Gibbs algorithm).
Denoted_; =< a1, ..., Gi—1, Gjq1, -, Qp >
Q(ba) = r(i)P(X; = bi| X i = d_y) (14)
Q(alb) = r())P(X; = ai| X s = b_;) (15)

so the ratio between the stationary probability of two states is:

Q(bla)  P(X;=b|X_; =ad_;)
Qalb) ~ P(X; = a;|X_; =b_; (16)

Ny
~—

sinced_; = b_;,

= 17)



Introduction to Computational Biology Lecture # 14

The Gibbs sampler is somewhat easier to implement than the Metropolis-Hastnighatgsince we
don’t have to create the proposal distribution. Furthermore, compgtingxs..x,,) can be done using

the equation
p(xy1..xp)

> P(2h, T2
Most of the times the numerator and the denominator can be expressedaakiet @nd then most of
the elements will be reduced.

p(z1|z2..2p) =

A sketch algorithm for the motif finding problem
e Initialization :

— Select random locations in sequenegs..., z x
— Compute an initial model M from these locations

e Sampling Iterations:

— Remove one sequence
— Recalculate model
— Pick a new location of motif in:; according to the model



