Introduction to Computational Biology
 Lecture \# 14: MCMC - Markov Chain Monte Carlo

Assaf Weiner

Tuesday, March 13, 2007

1 Introduction

Today we will return to the motif finding problem, in lecture 10 we have built an HMM model that describes a sequence with one or many occurrence of the motif, and estimated the model's parameters using the EM algorithm. Today we will show a different approach for solving the motif finding problem using Markov chain Monte Carlo (MCMC) method.

We have a probability distribution $P(x)$, we would like to compute the expectation of a function on a data set $E_{p}[f(X)]$. Suppose that we can generate i.i.d samples x_{1}, \ldots, x_{n} from $P(x)$ then

$$
\begin{equation*}
E_{p}[f(X)] \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

is a MC estimator of $E_{p}[f(x)]$, the next question is how to draw i.i.d samples from some $P(x)$?

2 Markov Chains

Before introducing the Metropolis-Hastings algorithm and the Gibbs sampler, a few introductory comments on Markov chains.

Markov Process: Let $X^{(t)}$ denote the value of a random variable at time t, and let the state space refer to the range of possible X values. The random variable is a Markov process if the transition probabilities between different values in the state space depend only on the random variables current state, i.e.,

$$
\begin{equation*}
\operatorname{Pr}\left(X^{(t+1)}=s_{t+1} \mid X^{(t)}=s_{t}, \ldots, X^{(1)}=s_{1}\right)=\operatorname{Pr}\left(X^{(t+1)}=s_{t+1} \mid X^{(t)}=s_{t}\right) \tag{2}
\end{equation*}
$$

Markov Chain: A Markov chain is a sequence of random variables $X^{(1)}, \ldots X^{(n)}$ with the Markov property (each state depends only on the previous state). A particular chain is defined by its transition probabilities, $\operatorname{Pr}(i, j)=\operatorname{Pr}(i \rightarrow j)$, which is the probability that a process at state space s_{i} moves to state s_{j} in a single step,

$$
\begin{equation*}
P(i, j)=P(i \rightarrow j)=\operatorname{Pr}\left(X^{(t+1)}=s_{j} \mid X^{(t)}=s_{i}\right) \tag{3}
\end{equation*}
$$

Homogeneous Markov Chain: A markov chain is called homogeneous (Markov chains with homogeneous transition probabilities) if transition from one state to another is not time-dependent, Formally

$$
\begin{equation*}
\operatorname{Pr}\left(X^{(t+1)} \mid X^{(t)}\right)=\operatorname{Pr}\left(X^{\left(t^{\prime}+1\right)} \mid X^{\left(t^{\prime}\right)}\right) \tag{4}
\end{equation*}
$$

for all t, t^{\prime}.
irreducible A Markov chain is said to be irreducible if it is possible to get to any state from any state with a positive probability

Acyclic process A state is called periodic with period k if any return to state i must occur in some multiple of k steps and k is the largest number with this property

$$
\exists k \quad \operatorname{Pr}\left(X^{(n+d)}=s \mid X^{(n)}=s\right)>0 \Longleftrightarrow d \bmod k=0
$$

A process is called acyclic if for every state X, X is not periodic. Put another way, the chain is not forced into some cycle of fixed length between certain states.

Definition 2.1 Ergodic Markov chain - A Markov chain will be called ergodic if it is homogeneous, acyclic and irreducible.

3 Sampling using Markov Chain

Our problem is to obtain samples from some complex probability distribution $p(x)$. In order to achieve that we will build a Markov Chain with some transition probability $Q\left(X^{(t)} \mid X^{(t+1)}\right)$ that when $t \rightarrow \infty$ converge to some stationary distribution

$$
\begin{equation*}
Q\left(X^{(t)} \mid X^{(0)}\right) \longrightarrow^{t \rightarrow \infty} Q^{\infty}\left(X^{(t)}\right) \quad \text { s.t. } \quad P(X=x)=Q^{\infty}\left(X^{(t)}=x\right) \tag{5}
\end{equation*}
$$

In order to use markov chain for sampling we want to reach a steady state that will represent our probability distribution, we'll denote this probability as $Q^{\infty}(X=x)=P(X=x)$ (stationary distribution).

Stationary Distribution: A distribution on the states such that the distribution at time $n+1$ is the same as the distribution at the time n is called a stationary distribution. The conditions for a stationary distribution is that the chain is irreducible and aperiodic (ergodic). When a chain is periodic, it can cycle in a deterministic fashion between states and hence never settles down to a stationary distribution.

A sufficient condition for a unique stationary distribution is that the detailed balance equation holds, for big enough t the probability to reach X_{t} and transit to X_{t+1} is:

$$
\begin{equation*}
P\left(X^{(t)}, X^{(t+1)}\right)=Q^{\infty}\left(X_{t}\right) Q\left(X^{(t+1)} \mid X^{(t)}\right) \tag{6}
\end{equation*}
$$

A Markov process is said to show detailed balance if the transition rates between each pair of states a and b in the state space obey

$$
\begin{equation*}
Q\left(X^{(t)}=a \mid X^{(t+1)}=b\right) \cdot Q^{\infty}\left(X_{t}=a\right)=Q\left(X^{(t)}=b \mid X^{(t+1)}=a\right) \cdot Q^{\infty}\left(X_{t}=b\right) \tag{7}
\end{equation*}
$$

Reversible Markov chains: A reversible Markov chain is a process in which you can generate the same trajectory whether you walk forward or backward in the process. Another way of phrasing it is a process in which we can't tell the order between states, if there are two given states we can't tell which one came before the other (diffusion in a solution is an example for such a reversible process). In reversible Markov chains:

$$
\begin{equation*}
P(X=a) Q\left(X^{(t+1)}=b \mid X^{(t)}=a\right)=P(X=b) Q\left(X^{(t+1)}=a \mid X^{(t)}=b\right) \tag{8}
\end{equation*}
$$

so the ratio between the stationary probability of two states is:

$$
\begin{equation*}
\frac{P(X=a)}{P(X=b)}=\frac{Q\left(X^{(t+1)}=a \mid X^{(t)}=b\right)}{Q\left(X^{(t+1)}=b \mid X^{(t)}=a\right)} \tag{9}
\end{equation*}
$$

if this holds for every a and b then the stationary distribution is the only distribution the holds this condition, and we have,

$$
\begin{equation*}
P(X=x)=Q^{\infty}\left(X^{(t)}=x\right) \quad \Longrightarrow P=Q^{\infty} \tag{10}
\end{equation*}
$$

We will introduce two methods to construct a Markov Chain (defining Q) that has the desired distribution as its stationary distribution.

4 Metropolis-Hastings Algorithm

Our goal is to draw samples from some distribution $p(x)$ where $p(x)=f(x) / K$. the normalizing constant K may not be known, and very difficult to compute. The Metropolis-Hastings algorithm (Metropolis and Ulam 1949, Metropolis et al. 1953, Hastings 1970) generates a sequence of draws from this distribution is as follows:

4.1 The Algorithm

1. Specify an initial value $\theta^{(0)}$ satisfying $f\left(\theta^{(0)}\right)>0$.
2. Repeat for $t=1,2, \ldots, M$
(a) Using current $\theta^{(t)}$ value, sample a candidate point θ^{\prime} from some proposal distribution $r\left(\theta^{\prime} \mid \theta^{(t)}\right)$. This distribution is also referred to as the jumping or candidate-generating distribution. The only restriction on the proposal density in the Metropolis algorithm is that it is symmetric, i.e., $r(a \mid b)=r(b \mid a)$.
(b) Sample $q \sim U(0,1)$.
(c) Let $\theta^{(t+1)}= \begin{cases}\theta^{\prime}, & \text { if } \frac{P\left(\theta^{(t)}\right) r\left(\theta^{\prime} \mid \theta^{(t)}\right)}{P\left(\theta^{\prime}\right) r\left(\theta^{(t)} \mid \theta^{\prime}\right)}>q ; \\ \theta^{(t)}, & \text { othrerwise. }\end{cases}$
3. Return the values $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(M)}$

We can summarize the Metropolis sampling as first computing

$$
\begin{equation*}
\alpha(b \mid a)=\min \left(\frac{P(b) r(a \mid b)}{P(a) r(b \mid a)}, 1\right) \tag{11}
\end{equation*}
$$

and then accepting a candidate point with probability α (the probability of a move). This generates a Markov chain $\left(\theta^{(0)}, \ldots, \theta^{(k)}, \ldots\right)$ as the transition probabilities from $\theta^{(t)}$ to $\theta^{(t+1)}$ depends only on $\theta^{(t)}$ and not $\left(\theta^{(0)}, \ldots, \theta^{(t-1)}\right)$. Following a sufficient burn-in period (of, say, k steps), the chain approaches its stationary distribution and samples from the vector $\left(\theta^{(k+1)}, \ldots, \theta^{(k+n)}\right)$ are samples from $p(x)$.

Metropolis-Hasting Sampling as a Markov Chain To demonstrate that the Metropolis-Hasting sampling generates a Markov chain whose equilibrium density is that candidate density $p(x)$, it is sufficient to show that the Metropolis-Hasting transition probability satisfy the detailed balance equation with $p(x)$.

Using the Metropolis-Hasting algorithm, we sample from,

$$
\begin{equation*}
Q(b \mid a)=r(b \mid a) \alpha(b \mid a)=r(b \mid a) \cdot \min \left(1, \frac{P(b) r(a \mid b)}{P(a) r(b \mid a)}\right) \tag{12}
\end{equation*}
$$

Thus if the transition probability satisfies $P(X=a) Q\left(X^{(t+1)}=b \mid X^{(t)}=a\right)=P(X=b) Q\left(X^{(t+1)}=\right.$ $a \mid X^{(t)}=b$) then that stationary distribution corresponds to draws from the target distribution. We assume w.l.o.g that $\left(1<\frac{P(b) r(a \mid b)}{P(a) r(b \mid a)}\right)$ for $a \neq b$

$$
\begin{equation*}
\frac{Q(b \mid a)}{Q(a \mid b)}=\frac{r(b \mid a) \cdot \frac{P(b) r(a \mid b)}{P(a) r(b \mid a)}}{r(a \mid b) \cdot 1}=\frac{r(b \mid a) P(b) r(a \mid b)}{r(a \mid b) P(a) r(b \mid a)}=\frac{P(b)}{P(a)} \tag{13}
\end{equation*}
$$

and the detailed balance equation holds.

5 Gibbs Sampling

The Gibbs sampler (introduced in the context of image processing by Geman and Geman 1984), is a special case of Metropolis-Hastings sampling wherein the random value is always accepted. The task remains to specify how to construct a Markov Chain whose values converge to the target distribution.

We will present this algorithm with the motif finding problem, Lets first recall the motif finding problem: given a set of n DNA sequences each of length t, find the profile that maximizes the consensus score.

5.1 Algorithm

1. Input $\vec{a}=<a_{1}, \ldots, a_{n}>$
2. Repeat for $t=1,2, \ldots, M$
(a) Sample random position in the array $i \sim r(n)$
(b) Set $\vec{b}=<b_{1}, \ldots, b_{n}>$ s.t.
i. $b_{j}=a_{j} \quad$ if $\quad j \neq i$
ii. $b_{i} \sim P\left(X_{i} \mid X_{1}=a_{1}, \ldots, X_{i-1}=a_{i-1}, X_{i+1}=a_{i+1}, \ldots, X_{n}=a_{n}\right)$
3. Return $\vec{b}=<b_{1}, \ldots, b_{n}>$

This algorithm produces detailed balanced Markov chains. We are interested only in transitions from \vec{a} to \vec{b} where $a \neq b$ and when \vec{a} and \vec{b} differ only in one coordinate (result of the Gibbs algorithm).

Denote $\vec{a}_{-i}=<a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}>$

$$
\begin{align*}
& Q(b \mid a)=r(i) P\left(X_{i}=b_{i} \mid \vec{X}_{-i}=\vec{a}_{-i}\right) \tag{14}\\
& Q(a \mid b)=r(i) P\left(X_{i}=a_{i} \mid \vec{X}_{-i}=\vec{b}_{-i}\right) \tag{15}
\end{align*}
$$

so the ratio between the stationary probability of two states is:

$$
\begin{equation*}
\frac{Q(b \mid a)}{Q(a \mid b)}=\frac{P\left(X_{i}=b_{i} \mid \vec{X}_{-i}=\vec{a}_{-i}\right)}{P\left(X_{i}=a_{i} \mid \vec{X}_{-i}=\vec{b}_{-i}\right)} \tag{16}
\end{equation*}
$$

since $\vec{a}_{-i}=\vec{b}_{-i}$,

$$
\begin{equation*}
\frac{Q(b \mid a)}{Q(a \mid b)}=\frac{P\left(X_{i}=b_{i} \mid \vec{X}_{-i}=\vec{b}_{-i}\right) \cdot P\left(\vec{X}_{-i}=\vec{b}_{-i}\right)}{P\left(X_{i}=a_{i} \mid \vec{X}_{-i}=\vec{a}_{-i}\right) \cdot P\left(\vec{X}_{-i}=\vec{a}_{-i}\right)}=\frac{P(\vec{b})}{P(\vec{a})} \tag{17}
\end{equation*}
$$

The Gibbs sampler is somewhat easier to implement than the Metropolis-Hasting algorithm since we don't have to create the proposal distribution. Furthermore, computing $p\left(x_{1} \mid x_{2} . . x_{n}\right)$ can be done using the equation

$$
p\left(x_{1} \mid x_{2} . . x_{n}\right)=\frac{p\left(x_{1} . . x_{n}\right)}{\sum_{x_{1}^{\prime}} p\left(x_{1}^{\prime}, x_{2} . . x_{n}\right)}
$$

Most of the times the numerator and the denominator can be expressed as a product and then most of the elements will be reduced.

A sketch algorithm for the motif finding problem

- Initialization:
- Select random locations in sequences x_{1}, \ldots, x_{N}
- Compute an initial model M from these locations
- Sampling Iterations:
- Remove one sequence x_{i}
- Recalculate model
- Pick a new location of motif in x_{i} according to the model

