Data Structures — LECTURE 15

Shortest paths algorithms

* Properties of shortest paths
 Bellman-Ford algorithm
« Dijsktra’s algorithm

Chapter 24 in the textbook (pp 580-599).

Data Structures, . Spring 2006 © L. Joskowicz

Weighted graphs -- reminder
» A weighted grapfis graph in which edges
haveweights(cost9 w(V, V).
« A graph is a weighted graph in which all costs are|1.

Two vertices with no edge (path) between them can
be thought of having an edge (path) with weight

]

Data Structures, . Spring 2006 © L Joskor

The cost of a path is
the sum of the costs
of its edges:

Negative-weight edges
» Shortest paths are well-defined as long as there ar
no negative-weight cycles.

* In negative cycles, the longer the path, the lower th
value-> shortest path has infinite number of edges!

1%

@

« Allow negative-weight edges, but disallow (or
detect) negative-weight cycles!

Data Structures, . Spring 2006 © L. Joskowicz

Two basic properties of shortest paths

Triangle inequality

Let G=(V,E) be a weighted directed graptt,E > R
a weight function andiv be a source vertex.
Then, for all edges=(u,v)OE:

d(sv) < d(s,u) +w(u,v)
Optimal substructure of a shortest path

Letp = <v,, ..v,> be the shortest path between
v, andv,. The sub-path betweenandv, where
1<ij=<Kk, pj=<v, ..v>Iis a shortest path.

Data Structures, . Spring 2006 © L. Joskowicz

Shortest paths and cycles

» The shortest path between any two vertices has no
negative-weight cycles.

* The representation for shortest paths between a
vertex and all other vertices is the same as the onfe
used in the unweigthed BFBreath-first tree:

G, = (V,,E) such that/ = {vOV: n[V] # null} 0{s}
andg, = {(n[v],v), vOV {s}}
* We will prove that a breath-first tré® a shortest-path tree

for its rootsin which vertices reachable frosare in it
and the unique simple path frato v is shortest.

Data Structures, . Spring 2006 © L. Joskowicz

Example: weighted graph

Data Structures, . Spring 2006 © L. Joskowicz

Example: shortest-path trép

Example: shortest-path tré)

Data Structures, . Spring 2006 © L. Joskowicz 7

Data Structures, . Spring 2006 © L. Joskowicz 8

Estimated distance from source

« As for BFS on unweighted graphs, we keep a labe|l
which is the current best estimate of the shortest
distance betweemandv.

Initially, disfs] = 0 anddisfv] = « for allv#s,
andn[v] = null.

At all times during the algorithnpdis{v] > d(s,v).

At the enddistv] = d(s\v) and @[V],v) O E,

Data Structures, . Spring 2006 © L. Joskowicz 9

Edge relaxation

» The process aklaxing an edgéu,\) consists of
testing whether it can improve the shortest path
from sto v so far by going through.

Relax{,v)
if disfv] > disfu] + w(u,v)
then disfv] < distu] + w(u,v)
n[v] € u

Data Structures, . Spring 2006 © L. Joskowicz 10

Properties of shortest paths and relaxat

1. Triangle inequality
Oe= (u,YOE: d(sv) <d(su) +w(u,V)
2. Upper-boundary property
OvaVv: disfv] > d(s,v) at all times.
disfv] is monotonically decreasing.
3. No-path property

if there is no path frorstov, then
disfv]=d(s\v) =

Data Structures, . Spring 2006 © L. Joskowicz 1

Properties of shortest paths and relaxa
4. Convergence property
if s> u—> vis a shortest path i@ for someu andyv,
anddisfu]= (s,u) at any time prior to relaxing edge
(u,V), thendisfv]= d(s,v) at all times afterwards.

5. Path-relaxation property
Letp = <v,, ..v,> be shortest path betwegpandv,.
when edges are relaxed in order
(Vo). (V1) -y Vi)
thendisfv,J= d(sv).

aaaaaaaaaaaaa . Spring 2006 © L. Josk 12

tion

Properties of shortest paths and relaxa

6. Predecessor sub-graph property

Oncedisfv]= d(s,v) for all vlV, the predecessor
subgraph is a shortest-paths tree rootexl at

Data Structures, . Spring 2006 © L. Joskowicz 13

tion

Two shortest-path algorithms

1. Bellmann-Ford algorithm
Handles and detects negative cycles

1. Dijkstra’s algorithm — Generalization of BFS
Requires non-negative weights

Assumptions:
1. Adjacency list representation
2. N+to=w

Data Structures, . Spring 2006 © L. Joskowicz 14

Bellman-Ford’s algorithm: overview

 Allows negative weightdf there is a negative cycle,
returns “a negative cycle exists”.
» The idea
—There is a shortest path fr@to any other vertex
that does not contain a non-negative cycle, it can
eliminated to produce a shorter path.
— The maximal number of edges in such a path wit
no cycles is\J| -1, because it can have at ma4t |
nodes on the path if there is no cycle.

—=> it is enough to check paths of up\# 1 edges.

Data Structures, . Spring 2006 © L. Josk

be

-

Bellman-Ford’s algorithm

Bellman- Ford(G, s)
Initialize(G, s)
fori «1toV| -1
for eachedge(u, V)EIE
doif disfv] >disfu] +w(u, v)
dist[v] €dist[u] +w(u, v)
fv]€u
for eachedgelu, v)OE
if distlv]>d[u] +w(u, v) return’ negativecycle”

Data Structures, . Spring 2006 © L. Joskowicz 16

Example: Bellman-Ford’s algorithm (0)
© 5 0 L&Le
order
e (ab)
(ac)
(ad)
(b.a)
T (e
(c.d)
(ds)
(d,b)
(sa)
vamsmses, oot omoncs OO 0 (sb)y

Example: Bellman-Ford’s algorithm (1)

Edge
order

(ab))
(@c)
(@d
(ba)
(ch)
(c,d)
(ds)
° (db) J
5 (sa)
o

(s0)

Y

Data Structures, . Spring 2006 © L. Joskowicz 18

Example: Bellman-Ford’s algorithm (2)
e

6 Edge
order
(ab)
(ac)
(ad)
(b:a)
(c.b)
(c.d)
(ds)
(d,b)
(sa)
(so)

Data Structures, . Spring 2006 © L. Joskowicz

Example: Bellman-Ford’s algorithm (2)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(ds)
(d,b)
(sa)
(sc)

Data Structures, . Spring 2006 © L. Joskowicz 20

Example: Bellman-Ford’s algorithm (3)
&~

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c.d)
(ds)
(d,b)
(sa)
(sb)

Data Structures, . Spring 2006 © L. Joskowicz

Example: Bellman-Ford’s algorithm (4)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(d,s)
(d,b)
(sa)
(sb)

Data Structures, . Spring 2006 © L. Joskowicz

Bellman-Ford’s algorithm: properties

The first pass over the edges — only neighboss of
are affected (1-edge paths). All shortest paths with
one edge are found.

The second pass — shortest 2-edge paths are foun
After V|-1 passes, all possible paths are checked.

Claim: we need to update any vertex in the |V| pas
iff there is a negative cycle reachable fioimG.

Data Structures, . Spring 2006 © L. Joskowicz 23

)l

vl

Bellman Ford algorithm: proof (1)

« => if we need to update an edge in the last iteration then
there is a negative cycle, because we proved before that i
there are no negative cycles, and the shortest paths are w
defined, we find them in th¥|}-1 iteration.

« <=if there is a negative cycle, we will discover a peolin
the last iteration. Suppose there is a negative cycle and th
algorithm does not find any problem in the last iteration.
This means that for all edges, we have that

for all edges in the cycle

Data Structures, . Spring 2006 © L. Joskowicz 2

ell

Bellman Ford algorithm: proof (2)

« Proof by contradiction: for all edges in the cycle

« After summing up over all edges in the cycle, we discovel
that the term on the left is equal to the first term @nright
(just a different order of summation). We can subtrachthe
and we get that the cycle is actually positive, which is a
contradiction.

Data Structures, . Spring 2006 © L. Joskowicz 25

Bellman-Ford’s algorithm: complexit)

* Visits M|-1 vertices> O(|V])
» Performs vertex relaxation on all edgesO(|E|)
 Overall,O(|V|.|E]) time andO(|V|+|E|) space.

Data Structures, . Spring 2006 © L. Joskowicz 26

T~

Bellman-Ford on DAGs

For Directed Acyclic Graphs (DAGD(|V|+|E])
relaxations are sufficient when the vertices are visited i
topologically sorted order

DAG-Shortest-Patl)

1. Topologically sort the vertices @&

2. Initialize G (disfv] and=(v)) with sas source.
3. for each vertexiin topologically sorted ordeto
4
5

for each vertewx incident tou do
Relax(,v)

Data Structures, . Spring 2006 © L. Joskowicz 27

Example: Bellman-Ford on a DAG (0)

2
E= (a9 (@b (s.b (s.9 (b,9 (b.0) (b.¢) (c.d) (c.€) (d.§
Vertices sorted from left to right

Data Structures, . Spring 2006 © L. Joskowicz 28

Example: Bellman-Ford on a DAG (1)

Example: Bellman-Ford on a DAG (2)

2
E=(9 (ab (s,b (.9 (b9 (b,d) (b.6 (c.d) (c.6) (.6

Vertices sorted from left to right

Data Structures, . Spring 2006 © L. Joskowicz 29

2
E=(@9 (a-b)|(5b) (5.9 (b,9 (b,d (b8 (c.d) (c.§ (d.®

Data Structures, . Spring 2006 © L. Joskowicz 30

Example: Bellman-Ford on a DAG (3)

Example: Bellman-Ford on a DAG (4)

2
E=(@9 (@b (sb (S,©|(b,C) (b,d) (b,§ (c,d (.6 (d.©

Data Structures, . Spring 2006 © L. Joskowicz 31

2
E=(9 (@b (s.b (s,9 (b9 (b.,d (b,e)|(0-0) (c,9(d.9

Data Structures, . Spring 2006 © L. Joskowicz 32

Example: Bellman-Ford on a DAG (5)

2
E=(@9 (@b (s.b (s,9 (b9 (b, (b.6 (c.d (C-€)| (d.®

Data Structures, . Spring 2006 © L. Joskowicz 33

Example: Bellman-Ford on a DAG (6)

Data Structures, . Spring 2006 © L. Joskowicz 34

Bellman-Ford on DAGS: correctness

Path-relaxation property

Let p = <v,, ..V,> be the shortest path betweagn
andv,. When the edges are relaxed in the order
(Voy V1)» (V, V), - (Vs V), thendistvi)= d(s,v,).

In a DAG, we have the correct ordering!
Therefore, the complexity B(|V|+|E|).

Data Structures, . Spring 2006 © L. Joskowicz 35

Dijkstra’s algorithm: overview

Idea Do the same as BFS for unweighted graphs,
with two differences:

—use the cost as the distance function

—use a minimum priority queue instead of a simp
queue.

Data Structures, . Spring 2006 © L. Joskowicz 36

The BFS algorithm
BFS(@G, 9)
labels] < current; disfs] = 0; a[] = null
for all verticesuin V—{s} do
labelu] € not_visited; didu] = oo; [u] = null
EnQueue),s)
while Q is not emptydo
u € DeQueueD)
for eachv that is a neighbor af do
if labelVv] = not_visitedthen labelv] < current
disfv] € distfu] + 1; n[v] € u
EnQueue,v)
label] ¢ visited

Data Structures, . Sprin

Example: BFS algorithm

Data Structures, . Spring 2006 © L. Joskowicz

Example: Dijkstra’s algorithm

Data Structures, . Spring 2006 © L. Joskowicz

Dijkstra’s algorithm

Dijkstra(G, s)
labels] < current; disfs] = 0; =[u] = null
for all verticesuin V—{s} do

labelu] € not_visited; didu] = oo; [u] = null
Q¢€s
while Q is not emptydo

u €< DeQueudd) Extract-Min@Q)

for eachv that is a neighbor af do

if d[v] > d[:;] +W(U,v)
then d[v] € d[u] + w(u,v); n[v] =u
Insert-QL_JeueQ,v)

Data St T

Example: Dijkstra’s algorithm (1)

Example: Dijkstra’s algorithm (2)

Data Structures, . Spring 2006 © L. Joskowicz

41

s gz oot D

Example: Dijkstra’s algorithm (3)
8 L 14

Data Structures, Spring 2006 © L. Joskowicz 43

Example: Dijkstra’s algorithm (4)

8 13
1

Data Structures, Spring 2006 © L. Joskowicz 44

Example: Dijkstra’s algorithm (5)

Example: Dijkstra’s algorithm (6)

Data Structures, Spring 2006 © L. Joskowicz 45

Data Structures, Spring 2006 © L. Joskowicz 46

Dijkstra’s algorithm: correctness (1)
TheoremUpon termination of Dijkstra’s algorithm
disfv] = d(s,v) for each vertex(lV
Definition: a path fronsto v is said to be apecialpath if
it is the shortest path frosto v in which all vertices
(except maybe fov) are insideS,
Lemma At the end of each iteration of thdile loop, the
following two properties hold:
1. For eactwds, dis{w] is the length of the shortest
pathfrom sto w which stays insid&
2. For eactwJ(V-9), dist(w) is the length of the
shortest special paftom sto w.
The theorem follows wheB=V.

47

Dijkstra’s algorithm: correctness (2)

Proof by induction on the size &

» For §=1, it is clearly truedistv] = « except for the
neighbors of, which contain the length of the shortest
special path.

Induction stepsuppose that in the last iteration nede
was added added ® By the induction assumption,
disfV] is the length of the shortest special paih. It is
also the length of the general shortest path since if
there is a shorter path ¥gassing through nodes §f
andx is the first node o§in that path, thew would have
been selected and notSo the first property still holds.

Data Structures, Spring 2006 © L. Joskowicz 48

Dijkstra’s algorithm: correctness (3)

Property 2 LetxJS Consider the shortest new special pativ to

If it doesn’t includev, dist{x] is the length of that path by the
induction assumption from the last iteration sidis{x] did
not change in the final iteration.

If it does includev, thenv can either be a node in the middle o
the last node before Note thatv cannot be a node in the
middle since then the path would pass f@mvtoyin S
but by Property 1, the shortest patlytoould have been
insideS > v need not be included.

If vis the last node beforeon the path, thedis{x] contains
the distance of that path, by the substitution
disfx] = disfv] + w(v,x) in the algorithm.

SARUVLEY »

Dijkstra’s algorithm: complexity

The algorithm perform&/| Extract-Min operations an
|E| Insert-Queue operations.

When the priority queue is implemented as a heap
insert take©(Ig|V|) and Extract-Min take®(Ig(|V]).
The total time iO(|V|Ig|V |) + O(E|lg|V]) =O([E|ig|V])
When E|=0O(|V]?), this is not optimal. In this case,
there are many more insert than extract operations
Solution Implement the priority queue as an array!
Insert will takeO(1) and Extract-MirO(|V|) >

O(VP) + O(|E]) = O([VP), better than the heap when
[Eel-is O(vRAgHVI)).

Summary

 Solving the shortest-path problem on weighted
graphs is performed by relaxation, based on the
path triangle inequality
Oe= (uU,VOE: d(sv) <d(s,u) +w(u,v)
« Two algorithms for solving the problem:

— Bellman Fordfor each vertex, relaxation on all edges.
TakesO(|E|.V|) time for graphs with non-negative
cycles.

— Dijkstra BFS-like, take(|E|lg|V|) time.

Data Structures, Spring 2006 © L. Joskowicz 56

ERROR: undefi ned
OFFENDI NG COVIVAND:

STACK:

