Data Structures — LECTURE 15

Shortest paths algorithms

* Properties of shortest paths
 Bellman-Ford algorithm
« Dijsktra’s algorithm

Chapter 24 in the textbook (pp 580-599).
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Weighted graphs -- reminder
» A weighted grapfis graph in which edges
haveweights(cost9 w(V, V).
« A graph is a weighted graph in which all costs are|1.

Two vertices with no edge (path) between them can
be thought of having an edge (path) with weight

]
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The cost of a path is
the sum of the costs
of its edges:

Negative-weight edges
» Shortest paths are well-defined as long as there ar
no negative-weight cycles.

* In negative cycles, the longer the path, the lower th
value-> shortest path has infinite number of edges!

1%

@

« Allow negative-weight edges, but disallow (or
detect) negative-weight cycles!
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Two basic properties of shortest paths

Triangle inequality

Let G=(V,E) be a weighted directed graptt,E > R
a weight function andiv be a source vertex.
Then, for all edges=(u,v)OE:

d(sv) < d(s,u) +w(u,v)
Optimal substructure of a shortest path

Letp = <v,, ..v,> be the shortest path between
v, andv,. The sub-path betweenandv, where
1<ij=<Kk, pj=<v, ..v>Iis a shortest path.
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Shortest paths and cycles

» The shortest path between any two vertices has no
negative-weight cycles.

* The representation for shortest paths between a
vertex and all other vertices is the same as the onfe
used in the unweigthed BFBreath-first tree:

G, = (V,,E) such that/ = {vOV: n[V] # null} 0{s}
andg, = {(n[v],v), vOV {s}}
* We will prove that a breath-first tré® a shortest-path tree

for its rootsin which vertices reachable frosare in it
and the unique simple path frato v is shortest.
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Example: weighted graph
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Example: shortest-path trép

Example: shortest-path tré)
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Estimated distance from source

« As for BFS on unweighted graphs, we keep a labe|l
which is the current best estimate of the shortest
distance betweemandv.

Initially, disfs] = 0 anddisfv] = « for allv#s,
andn[v] = null.

At all times during the algorithnpdis{v] > d(s,v).

At the enddistv] = d(s\v) and @[V],v) O E,
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Edge relaxation

» The process aklaxing an edgéu,\) consists of
testing whether it can improve the shortest path
from sto v so far by going through.

Relax{,v)
if disfv] > disfu] + w(u,v)
then disfv] < distu] + w(u,v)
n[v] € u
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Properties of shortest paths and relaxat

1. Triangle inequality
Oe= (u,YOE: d(sv) <d(su) +w(u,V)
2. Upper-boundary property
OvaVv: disfv] > d(s,v) at all times.
disfv] is monotonically decreasing.
3. No-path property

if there is no path frorstov, then
disfv]=d(s\v) =
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Properties of shortest paths and relaxa
4. Convergence property
if s> u—> vis a shortest path i@ for someu andyv,
anddisfu]= (s,u) at any time prior to relaxing edge
(u,V), thendisfv]= d(s,v) at all times afterwards.

5. Path-relaxation property
Letp = <v,, ..v,> be shortest path betwegpandv,.
when edges are relaxed in order
(Vo). (V1) -y Vi)
thendisfv,J= d(sv).
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Properties of shortest paths and relaxa

6. Predecessor sub-graph property

Oncedisfv]= d(s,v) for all vlV, the predecessor
subgraph is a shortest-paths tree rootexl at
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Two shortest-path algorithms

1. Bellmann-Ford algorithm
Handles and detects negative cycles

1. Dijkstra’s algorithm — Generalization of BFS
Requires non-negative weights

Assumptions:
1. Adjacency list representation
2. N+to=w
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Bellman-Ford’s algorithm: overview

 Allows negative weightdf there is a negative cycle,
returns “a negative cycle exists”.
» The idea
—There is a shortest path fr@to any other vertex
that does not contain a non-negative cycle, it can
eliminated to produce a shorter path.
— The maximal number of edges in such a path wit
no cycles is\J| -1, because it can have at ma4t |
nodes on the path if there is no cycle.

—=> it is enough to check paths of up\# 1 edges.
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Bellman-Ford’s algorithm

Bellman- Ford(G, s)
Initialize(G, s)
fori «1toV| -1
for eachedge(u, V)EIE
doif disfv] >disfu] +w(u, v)
dist[ v] €dist[u] +w(u, v)
fv]€u
for eachedgelu, v)OE
if distlv]>d[u] +w(u, v) return’ negativecycle”
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Example: Bellman-Ford’s algorithm (0)
© 5 0 L&Le
order
e (ab)
(ac)
(ad)
(b.a)
T (e
(c.d)
(ds)
(d,b)
(sa)
vamsmses, oot omoncs OO 0 (sb)y

Example: Bellman-Ford’s algorithm (1)

Edge
order

(ab) )
(@c)
(@d
(ba)
(ch)
(c,d)
(ds)
° (db) J
5 (sa)
o

(s0)

Y
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Example: Bellman-Ford’s algorithm (2)
e

6 Edge
order
(ab)
(ac)
(ad)
(b:a)
(c.b)
(c.d)
(ds)
(d,b)
(sa)
(so)
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Example: Bellman-Ford’s algorithm (2)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(ds)
(d,b)
(sa)
(sc)
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Example: Bellman-Ford’s algorithm (3)
&~

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c.d)
(ds)
(d,b)
(sa)
(sb)
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Example: Bellman-Ford’s algorithm (4)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(d,s)
(d,b)
(sa)
(sb)
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Bellman-Ford’s algorithm: properties

The first pass over the edges — only neighboss of
are affected (1-edge paths). All shortest paths with
one edge are found.

The second pass — shortest 2-edge paths are foun
After V|-1 passes, all possible paths are checked.

Claim: we need to update any vertex in the |V| pas
iff there is a negative cycle reachable fioimG.
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Bellman Ford algorithm: proof (1)

« => if we need to update an edge in the last iteration then
there is a negative cycle, because we proved before that i
there are no negative cycles, and the shortest paths are w
defined, we find them in th¥|}-1 iteration.

« <=if there is a negative cycle, we will discover a peolin
the last iteration. Suppose there is a negative cycle and th
algorithm does not find any problem in the last iteration.
This means that for all edges, we have that

for all edges in the cycle
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Bellman Ford algorithm: proof (2)

« Proof by contradiction: for all edges in the cycle

« After summing up over all edges in the cycle, we discovel
that the term on the left is equal to the first term @nright
(just a different order of summation). We can subtrachthe
and we get that the cycle is actually positive, which is a
contradiction.
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Bellman-Ford’s algorithm: complexit)

* Visits M|-1 vertices> O(|V])
» Performs vertex relaxation on all edgesO(|E|)
 Overall,O(|V|.|E]) time andO(|V|+|E|) space.
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Bellman-Ford on DAGs

For Directed Acyclic Graphs (DAGD(|V|+|E])
relaxations are sufficient when the vertices are visited i
topologically sorted order

DAG-Shortest-Patl)

1. Topologically sort the vertices @&

2. Initialize G (disfv] and=(v)) with sas source.
3. for each vertexiin topologically sorted ordeto
4
5

for each vertewx incident tou do
Relax(,v)
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Example: Bellman-Ford on a DAG (0)

2
E= (a9 (@b (s.b (s.9 (b,9 (b.0) (b.¢) (c.d) (c.€) (d.§
Vertices sorted from left to right
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Example: Bellman-Ford on a DAG (1)

Example: Bellman-Ford on a DAG (2)

2
E=(9 (ab (s,b (.9 (b9 (b,d) (b.6 (c.d) (c.6) (.6

Vertices sorted from left to right
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2
E=(@9 (a-b)|(5b) (5.9 (b,9 (b,d (b8 (c.d) (c.§ (d.®
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Example: Bellman-Ford on a DAG (3)

Example: Bellman-Ford on a DAG (4)

2
E=(@9 (@b (sb (S,©|(b,C) (b,d) (b,§ (c,d (.6 (d.©
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2
E=(9 (@b (s.b (s,9 (b9 (b.,d (b,e)|(0-0) (c,9(d.9
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Example: Bellman-Ford on a DAG (5)

2
E=(@9 (@b (s.b (s,9 (b9 (b, (b.6 (c.d (C-€)| (d.®
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Example: Bellman-Ford on a DAG (6)
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Bellman-Ford on DAGS: correctness

Path-relaxation property

Let p = <v,, ..V,> be the shortest path betweagn
andv,. When the edges are relaxed in the order
(Voy V1)» (V, V), - (Vs V), thendistvi )= d(s,v,).

In a DAG, we have the correct ordering!
Therefore, the complexity B(|V|+|E|).
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Dijkstra’s algorithm: overview

Idea Do the same as BFS for unweighted graphs,
with two differences:

—use the cost as the distance function

—use a minimum priority queue instead of a simp
queue.
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The BFS algorithm
BFS(@G, 9)
labels] < current; disfs] = 0; a[] = null
for all verticesuin V—{s} do
labelu] € not_visited; didu] = oo; [u] = null
EnQueue),s)
while Q is not emptydo
u € DeQueueD)
for eachv that is a neighbor af do
if labelVv] = not_visitedthen labelv] < current
disfv] € distfu] + 1; n[v] € u
EnQueue,v)
label] ¢ visited
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Example: BFS algorithm
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Example: Dijkstra’s algorithm
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Dijkstra’s algorithm

Dijkstra(G, s)
labels] < current; disfs] = 0; =[u] = null
for all verticesuin V—{s} do

labelu] € not_visited; didu] = oo; [u] = null
Q¢€s
while Q is not emptydo

u €< DeQueudd) Extract-Min@Q)

for eachv that is a neighbor af do

if d[v] > d[:;] +W(U,v)
then d[v] € d[u] + w(u,v); n[v] =u
Insert-QL_JeueQ,v)
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Example: Dijkstra’s algorithm (1)

Example: Dijkstra’s algorithm (2)
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Example: Dijkstra’s algorithm (3)
8 L 14
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Example: Dijkstra’s algorithm (4)

8 13
1
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Example: Dijkstra’s algorithm (5)

Example: Dijkstra’s algorithm (6)

Data Structures, Spring 2006 © L. Joskowicz 45

Data Structures, Spring 2006 © L. Joskowicz 46

Dijkstra’s algorithm: correctness (1)
TheoremUpon termination of Dijkstra’s algorithm
disfv] = d(s,v) for each vertex(lV
Definition: a path fronsto v is said to be apecialpath if
it is the shortest path frosto v in which all vertices
(except maybe fov) are insideS,
Lemma At the end of each iteration of thdile loop, the
following two properties hold:
1. For eactwds, dis{w] is the length of the shortest
pathfrom sto w which stays insid&
2. For eactwJ(V-9), dist(w) is the length of the
shortest special paftom sto w.
The theorem follows wheB=V.

47

Dijkstra’s algorithm: correctness (2)

Proof by induction on the size &

» For §=1, it is clearly truedistv] = « except for the
neighbors of, which contain the length of the shortest
special path.

Induction stepsuppose that in the last iteration nede
was added added ® By the induction assumption,
disfV] is the length of the shortest special paih. It is
also the length of the general shortest path since if
there is a shorter path ¥gassing through nodes §f
andx is the first node o§in that path, thew would have
been selected and notSo the first property still holds.
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Dijkstra’s algorithm: correctness (3)

Property 2 LetxJS Consider the shortest new special pativ to

If it doesn’t includev, dist{x] is the length of that path by the
induction assumption from the last iteration sidis{x] did
not change in the final iteration.

If it does includev, thenv can either be a node in the middle o
the last node before Note thatv cannot be a node in the
middle since then the path would pass f@mvtoyin S
but by Property 1, the shortest patlytoould have been
insideS > v need not be included.

If vis the last node beforeon the path, thedis{x] contains
the distance of that path, by the substitution
disfx] = disfv] + w(v,x) in the algorithm.

SARUVLEY »

Dijkstra’s algorithm: complexity

The algorithm perform&/| Extract-Min operations an
|E| Insert-Queue operations.

When the priority queue is implemented as a heap
insert take©(Ig|V|) and Extract-Min take®(Ig(|V]).
The total time iO(|V|Ig|V |) + O(E|lg|V]) =O([E|ig|V])
When E|=0O(|V]?), this is not optimal. In this case,
there are many more insert than extract operations
Solution Implement the priority queue as an array!
Insert will takeO(1) and Extract-MirO(|V|) >

O(VP) + O(|E]) = O([VP), better than the heap when
[Eel-is O(vRAgHVI)).

Summary

 Solving the shortest-path problem on weighted
graphs is performed by relaxation, based on the
path triangle inequality
Oe= (uU,VOE: d(sv) <d(s,u) +w(u,v)
« Two algorithms for solving the problem:

— Bellman Fordfor each vertex, relaxation on all edges.
TakesO(|E|.V|) time for graphs with non-negative
cycles.

— Dijkstra BFS-like, take(|E|lg|V|) time.
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ERROR: undefi ned
OFFENDI NG COVIVAND:

STACK:



