Data Structures — LECTURE 14 Connected components

 Find the largest components (sub-graphs) such tha

Strongly connected components there is a path from any vertex to any other vertex.
» Applications networking, communications.
« Definition and motivation » Undirected graphsapply BFS/DFS (inner function)

from a vertex, and mark vertices\asited
Upon termination, repeat for every unvisited vertex.

. « Directed graphsstrongly connected components, not
Chapter 22.5 in the textbook (pp 552—557). just connected: a path fromto v AND from v to u,

which are not necessarily the same!

* Algorithm
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Example: strongly connected components | Example: strongly connected components
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Strongly connected components Strongly connected components gragh
« Definition: the strongly connected components « Definition: theSCC graph G= (V-,E") of the
(scQ)c,, ..., C,of a directed grapts = (V,E) are graphG = (V,E) is as follows:
thelargestdisjoint sub-graphs (no common vertices -V-={C,, ...,C}. Each SCC is a vertex.
or edges) such that for any two verticesndv in -E ={(C,C)| i# and &y)UE, wherexIC, andy(C,}.
C,, there is a path fromto v and fromv to u. A directed edge between components corresponds to &

« Equivalence classes of the binary relapath(u,v) directed edge between them from any of their vertices.

denoted by ~v. The relation is not symmetric! » G is a directed acyclic graph (no directed cycles)
+ Goat compute the strongly connected components + Definition: thetranspose graph &= (V,E") of the
of Gin time linear in the graph size(|V|+[E]). graphG = (V,E) is G with its edge directions

reversedE™= {(u,v)| (v,u)0E}.
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Example: SCC graph

Example: transpose gragh
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SCC algorithm

Idea compute the SC@raphG™ = (V-,E") with two
DFS, one foiG and one for its transpo&¥,
visiting the vertices in reverse order

CC

1. DFS@E) to compute finishing timefsv], OvOV
2. ComputeGT

3. DFS@") in the order oflecreasing f[Vv]

4. Output the vertices of each tree in the DFS fore
as a separate SCC.
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Example: computing SCC (1)

2/5 3/4

Example: computing SCC (2)

Example: computing SCC (3)




Example: computing SCC (4)

Example: computing SCC (5)
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Example: computing SCC (6)
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Example: computing SCC (2)

Labeled transpose graph'G
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Proof of correctness: SCC (1)

Lemma 1 LetCandC' be two distinct SCC of
G=(V,E), letuvOCandu',v OC'.
If there is a path from to u’, then there
cannot be a path fromi tov.

Definition: the start and finishing times of a set of
verticesU O Vis:

d[U] = min,,{d [ul}
f U] = max;,{f [ul}
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Proof of correctness: SCC (2)
Lemma 2 LetC andC' be two distinct SCC of
G, and let ¢,v)JE where andiCJC andvIC'.

Then f[C] > f[C'].

Proof: there are two cases, depending on whic
strongly connected compone@tor C’
is discovered first:
1. Cwas discovered befo@’: d(C) <d(C)
2. Cwas discovered aft&€€:  d(C) >d(C)
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Example: finishing times
2/5 3/4
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Example: finishing times
2/5 3/4
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Proof of correctness: SCC (3)

1.d(C) <d(C): Cdiscovered befor€’

* Letxbe the first vertex discovered @

e There is a path i from x to each vertex of
which has not yet been discovered.

* Becausel,v)JE, for any vertexwIC’, there is
also a path at timé[x] from x to w in G consisting
only of unvisited verticex>u->v->w.

e Thus, all vertices i€ andC’ become descendant$
of xin the depth-first tree.

e Thereforef[X] =f[C] > f[C].
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Proof of correctness: SCC (4)

2.d(C) >d(C): Cdiscovered afte€
Lety be the first vertex discovered @i.

» Attimed[y], all vertices inC' are unvisited. There
is a path inG fromy to each vertex of’ which has
only vertices not yet discovered. Thus, all vertices
C' will become descendants gfin the depth-first
tree, and sé[y] =f[C].

o At timed[y], all vertices inC are unvisited. Since
there is an edgeu{) fromCto C’, there cannot, by
Lemma 1, be a path frof to C. Hence, no vertex
in Cis reachable frory.
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Proof of correctness: SCC (5)
2.d(C) >d(C)

o Attimef[y], therefore, all vertices i@ are
unvisited. Thus, no vertex @ is reachable frorg.

« Attimef[y], therefore, all vertices i@ are still
unvisited. Thus, for anuy vertexin C:

fw] >f[yl > f[C]>f[C].
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Proof of correctness: SCC (6)

Corollary: for edge ¢,v)IET, andulJC andv’'IC’
f[C]<f[C]
 This provides shows to what happens during the
second DFS.

e The algorithm starts atwith the SCQOC whose
finishing timef [C] is maximum. Since there are no
vertices inG" from C to any other SCC, the search
from x will not visit any other component!

* Once all the vertices have been visited, a new SC(
constructed as above.
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Proof of correctness: SCC (7)

Theorem The SCC algorithm computes the strongly
connected components of a directed graph

Proof by induction on the number of depth-first trees
found in the DFS o6": the vertices of each tree
form a SCC. The firdt trees produced by the
algorithm are SCC.

Basis for k = 0, this is trivially true.

Inductive stepThe firstk trees produced by the
algorithm are SCC. Consider tHer{)* tree rooted at
uin SCCC. By the lemmaf [u] = f[C] > f[C’] for
SCCC’ t[')athas not yet been visited.
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Proof of correctness: SCC (8)

Whenu is visited, all the verticesin its SCC have no
been visited. Therefore, all verticeare descendants
of uin the depth-first tree.

By the inductive hypothesis, and the corollary, any
edges inG" that leaveC must be in SCC that have
already been visited.

Thus, no vertex in any SCC other thawill be a
descendant af during the depth first search Gf.

Thus, the vertices of the depth-first search tre@'in
that is rooted at form exactly one connected
component.
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Uses of the SCC graph
« Articulation: a vertex whose removal disconne@ts
« Bridge an edge whose removal disconnégts

« Euler tour a cycle that traverses all edge<zof
exactly once (vertices can be visited more than on

All can be computed i®(|E|) on the SCC.
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