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Data Structures – LECTURE 14 

Strongly connected components

• Definition and motivation

• Algorithm

Chapter 22.5 in the textbook (pp 552—557).
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Connected components
• Find the largest components (sub-graphs) such that 

there is a path from any vertex to any other vertex.

• Applications: networking, communications.

• Undirected graphs: apply BFS/DFS (inner function) 
from a vertex, and mark vertices as visited.        
Upon termination, repeat for every unvisited vertex.

• Directed graphs: strongly connected components, not 
just connected: a path from u to v AND from v to u,
which are not necessarily the same! 
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Example: strongly connected components
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Strongly connected components
• Definition: the strongly connected components 

(SCC) C1, …, Ck of a directed graph G = (V,E) are 
the largestdisjoint sub-graphs (no common vertices 
or edges) such that for any two vertices u and v in
Ci, there is a path from u to v and from v to u. 

• Equivalence classes of the binary relation path(u,v) 
denoted  by u ~ v. The relation is not symmetric!

• Goal: compute the strongly connected components 
of G in time linear in the graph size �(|V|+|E|). 
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Strongly connected components graph 
• Definition: theSCC graph G~ = (V~,E~) of the 

graph G = (V,E) is as follows:
– V~ = {C1, …, Ck}.  Each SCC is a vertex.

– E~ = {(Ci,Cj)|  i�j and (x,y)∈E, where x∈Ci and y∈Cj}.   
A directed edge between components corresponds to a 
directed edge between them from any of their vertices.  

• G~ is a directed acyclic graph (no directed cycles)!

• Definition: the transpose graph GT = (V,ET) of the 
graph G = (V,E) is G with its edge directions 
reversed: ET= {(u,v)| (v,u)∈E}. 
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Example: SCC graph
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Example: transpose graph GT
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SCC algorithm
Idea: compute the SCC�graph G~ = (V~,E~) with two 

DFS, one for G and one for its transpose GT, 
visiting the vertices in reverse order.

SCC(G)

1. DFS(G) to compute finishing times f [v], ∀v∈V

2. Compute GT

3. DFS(GT) in the order of decreasing f [v]

4. Output the vertices of each tree in the DFS forest 
as a separate SCC. 
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Example: computing SCC (1) 
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Example: computing SCC (2) 
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Example: computing SCC (3) 
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Example: computing SCC (4) 
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Example: computing SCC (5) 
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Example: computing SCC (6) 
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Example: computing SCC (2) 
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Proof of correctness: SCC (1)
Lemma 1:  Let C and C’ be two distinct SCC of   

G = (V,E), let u,v ∈ C and u’,v’ ∈ C’.                 
If there is a path from u to u’, then there 
cannot be a path from v’ to v.

Definition:  the start and finishing times of a set of 
vertices U ⊆ V is:  

d[U] = minu∈U{ d [u]}

f [U] = maxu∈U{ f [u]}
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Proof of correctness: SCC (2)
Lemma 2:  Let C and C’ be two distinct SCC  of  

G, and let (u,v)∈E where and u∈C and v∈C’. 

Then, f [C] > f [C’].

Proof: there are two cases, depending on which 
strongly connected component, C or C’

is discovered first:

1. C was discovered beforeC’:  d(C) < d(C’)

2. C was discovered afterC’:     d(C) > d(C’)
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Example: finishing times 
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Proof of correctness: SCC (3)
1. d(C) < d(C’) : C discovered beforeC’

• Let x be the first vertex discovered in C. 

• There is a path in G from x to each vertex of C 
which has not yet been discovered. 

• Because (u,v)∈E, for any vertex w∈C’, there is 
also a path at time d[x] from x to w in G consisting 
only of unvisited vertices: x�u�v�w.

• Thus, all vertices inC andC’ become descendants 
of x in the depth-first tree. 

• Therefore, f [x] = f [C] > f [C’].
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Proof of correctness: SCC (4)
2. d(C) > d(C’): C discovered after C’

Let y be the first vertex discovered in C’. 
• At time d[y], all vertices in C’ are unvisited. There 

is a path in G from y to each vertex of C’ which has 
only vertices not yet discovered. Thus, all vertices in 
C’ will become descendants of y in the depth-first 
tree, and so f [y] = f [C’]. 

• At time d[y], all vertices in C are unvisited. Since 
there is an edge (u,v) from C to C’, there cannot, by 
Lemma 1, be a path from C’ to C. Hence, no vertex 
in C is reachable from y. 
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Proof of correctness: SCC (5)

2. d(C) > d(C’)
• At time f [y], therefore, all vertices in C are 

unvisited. Thus, no vertex in C is reachable from y. 
• At time f [y], therefore, all vertices in C are still 

unvisited. Thus, for anuy vertex w in C:

f [w] > f [y] � f [C] > f [C’].
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Proof of correctness: SCC (6)
Corollary: for edge (u,v)∈ET, and u∈C and v’∈C’

f [C] < f [C’]

• This provides shows to what happens during the 
second DFS. 

• The algorithm starts at x with the SCC C whose 
finishing time f [C] is maximum. Since there are no 
vertices in GT from C to any other SCC, the search 
from x will not visit any other component!

• Once all the vertices have been visited, a new SCC is 
constructed as above. 
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Proof of correctness: SCC (7)
Theorem: The SCC algorithm computes the strongly 

connected components of a directed graph G.
Proof: by induction on the number of depth-first trees 

found in the DFS of GT: the vertices of each tree 
form a SCC. The first k trees produced by the 
algorithm are SCC.  

Basis: for k = 0, this is trivially true.
Inductive step: The first k trees produced by the 

algorithm are SCC. Consider the (k+1)st tree rooted at 
u in SCC C. By the lemma, f [u] = f [C] > f [C’] for 
SCC C’ that has not yet been visited.  
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Proof of correctness: SCC (8)
• When u is visited, all the vertices v in its SCC have not 

been visited. Therefore, all vertices v are descendants 
of u in the depth-first tree. 

• By the inductive hypothesis, and the corollary, any 
edges in GT that leave C must be in SCC that have 
already been visited. 

• Thus, no vertex in any SCC other than C will be a 
descendant of u during the depth first search of GT. 

• Thus, the vertices of the depth-first search tree in GT

that is rooted at u form exactly one connected 
component. 
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Uses of the SCC graph 
• Articulation: a vertex whose removal disconnects G. 

• Bridge: an edge whose removal disconnects G.

• Euler tour: a cycle that traverses all edges of G
exactly once (vertices can be visited more than once)

All can be computed in O(|E|) on the SCC.
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