
�

Data Structures, Spring 2006 © L. Joskowicz �

Data Structures – LECTURE 13

Minumum spanning trees

• Motivation

• Properties of minimum spanning trees

• Kruskal’s algorithm

• Prim’s algorithm

Chapter 23 in the textbook (pp 561—579).
Data Structures, Spring 2006 © L. Joskowicz �

Motivation
• Given a set of nodes and possible connections with

weights between them, find the subset of
connections that connects all the nodes andwhose
sum of weights is the smallest.

• Examples:
– telephone switching network
– electronic board wiring

• The nodes and subset of connections form a tree!
• This tree is called the Minimum Spanning Tree

(MST – ������	���
�����

Data Structures, Spring 2006 © L. Joskowicz �

Example: spanning tree

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10

Cost: 51
Data Structures, Spring 2006 © L. Joskowicz �

Example: minimum spanning tree

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10

Cost: 37

Data Structures, Spring 2006 © L. Joskowicz �

Spanning trees
• Definition: Let G=(V,E) be a weighted connected

undirected graph. A spanning treeof G is a
subset T ⊆ E of edges, such that the sub-graph
G’=(V,T) is connected and acyclic.

• Theminimum spanning tree(MST) is a spanning
tree that minimizes the sum:

() ()
()
�

∈
=

Tvu

vuwTw
,

,

Data Structures, Spring 2006 © L. Joskowicz �

Generic MST algorithm
Greedy strategy: grow the minimum spanning tree

one edge at a time, making sure that the added edge
preserves the tree structure and the minimality
condition� add “safe” edges incrementally.

Generic-MST(G=(V,E))
T = ∅;
while (T is not a spanning tree of G) do

choose a safe edge e=(u,v) ∈ E
T = T ∪ { e}

return T

�

Data Structures, Spring 2006 © L. Joskowicz �

Properties of MST (1)
• Question: how to find safe edgesefficiently?

• Theorem 1: Let and e=(u,v) be a minimum
weight edge with one endpoint in U and the other
in V–U. Then there exists a minimum spanning tree
T such that e is in T.

VU ⊂

U V–U V
T

e

Data Structures, Spring 2006 © L. Joskowicz �

Properties of MST (2)

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10

U
V–Ucut

A cut is a partition of V

Data Structures, Spring 2006 © L. Joskowicz �

Properties of MST (2)
Proof: Let T be an MST. If e is not in T, add e to T.

Because T is a tree, the addition of e creates a cycle
which contains e and at least one more edge
e’=(u’,v’), where u’∈U andv’∈ V–U.

Clearly, w(e) � w(e’) since e is of minimum weight
among the edges connecting U and V–U. We can
thus delete e’ from T.

The resulting T’ = T – { e’} ∪{ e} is a tree whose
weight is less or equal than that of T: w(T’) ��w(T).

Data Structures, Spring 2006 © L. Joskowicz ��

Properties of MST (3)
Theorem 2: Let G=(V,E) be a connected undirected

graph and A a subset of E included in a minimum
spanning tree T for G. Let (U, V–U) be a cut that
respects A (no edge of A crosses the cut), and let
e=(u,v) be a minimum weight edge crossing (U, V–U).
Then e is safe for A.

U V–U V
T

cut

Data Structures, Spring 2006 © L. Joskowicz ��

Properties of MST (4)
Proof:Define an edgee to be a light edgecrossing a cut if its

weight is the minimum crossing the cut.

Let T be an MST that includes A, and assume T does not
contain the light edge e = (u,v) (if it does, e is safe).

Construct another MST T’ that includes A ∪ { e}. The edge
forms a cycle with edges on the path p from u to v in T.
Since u and v are on opposite sides of the cut, there is at
least one edge e’ = (x,y) in T on the path p that also crosses
the cut. The edge e’ is not in A because the cut respects A.
Since e’ is on the unique path from u to v in T, removing it
breaks T into two components.

Data Structures, Spring 2006 © L. Joskowicz ��

Properties of MST (5)
Adding e = (u,v) reconnects the two components to form a
new spanning tree:

T’ = T –{e’} ∪ { e}

We now show that T’ is a MST. Since e = (u,v) is a light
edge crossing (U, V–U) and e’ = (x,y) also crosses this cut,
w(u,v) � w(x,y). Thus:

w(T’) = w(T) – w(u,v) + w(x,y)

� w(T)

Since T is an MST and w(T’) � w(T), then w(T’) = w(T)
and T’ is also an MST.

�

Data Structures, Spring 2006 © L. Joskowicz ��

Properties of MST (6)
Corollary: Let G=(V,E) be a connected undirected

graph and A a subset of E included in a minimum
spanning tree T for G, and let C = (VC, EC) be a
tree in the forest GA = (V,A). If e is a light edge
connecting C to some other component in GA,
then e is safe for A.

Proof: The cut (VC, V–VC) respects A, and e is a
light edge for this cut. Therefore, e is safe.

Data Structures, Spring 2006 © L. Joskowicz ��

Two algorithms to find an MST

There are two ways of adding a safe edge:

1. Kruskal’s algorithm: the set A is a forest and the
safe edge added is always the least-weight edge
in the graph connecting two distinct
components (Theorem 2).

2. Prim’s algorithm: the set A is a tree and the safe
edge added is always the least-weight edge
connecting A to a vertex not in A (Theorem 1).

Data Structures, Spring 2006 © L. Joskowicz ��

Kruskal’s algorithm
MST-Kruskal(G)

A� ∅
for each vertex v∈V do

Make-Set(v)
sort the edges in E in non-decreasing weight order
for each edge e = (u,v)∈E do

if Find-Set(u) � Find-Set(v) /* the trees are distinct */
then

A� A ∪ { e}
Union(u,v) /* combine two trees */

return A
Data Structures, Spring 2006 © L. Joskowicz ��

Example: Kruskal’s algorithm

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10
XX

Cost: 37

X

Data Structures, Spring 2006 © L. Joskowicz ��

Analysis of Kruskal’s algorithm
Correctness: follows directly from Theorem 2.

Complexity: Depends on the implementation of the set
operations! A naïve implementation takes O(|V| |E|).
– Sorting the edges takes O(|E| lg |E|).

– the for loop goes over every edge and performs two
Find-Set and one Union operation. These can be
implemented to take O(1) amortized time.

The total running time is O(|E| lg |E|) = O(|E| lg |V|).

Data Structures, Spring 2006 © L. Joskowicz ��

Prim’s algorithm
MST-Prim(G, root)

for each vertex v∈V do
key(v) � �; �[v] � null

key(root) � 0; Q� V
while Q is not emptydo
u� Extract-Min(Q)

for each v that is a neighbor ofu do

if v∈Q and w(u,v) < key(v)

then �[v] � u
key(v) � w(u,v) /*decrease value of key */

�

Data Structures, Spring 2006 © L. Joskowicz ��

Example: Prim’s algorithm

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10

Cost: 37

�0

� � �

�

���

4 8

2

421

7

9

Data Structures, Spring 2006 © L. Joskowicz ��

Analysis of Prim’s algorithm
Correctness: follows directly from the Theorem 1.

Complexity: Depends on the implementation of the
minimum priority queue. With a binary mean-heap,
we have:
– Building the initial heap takes O(|V|).

– Extract-Min takes O(lg |V|) per vertex � total O(|V| lg |V|)

– The for loop is executed O(|E|).

– Membership test is O(1). Decreasing a key is O(lg |V|).

Overall, the running time is O(|V| lg |V| + |E| lg |V|) =
O(|E| lg |V|).

Data Structures, Spring 2006 © L. Joskowicz ��

Summary: MST
• MST is a tree of all nodes with minimum total cost

• Two greedy algorithms for finding MST:
– Kruskal’s algorithm: edge-based. Runs in O(|V| |E|).

– Prim’s algorithm: vertex-based. Runs in O(|E| lg |V|).

• Complexity of Kruskal’s algorithm can be improved
with Union-Find ADT to O(|E| lg |V|),

• Complexity of Prim’s algorithm can be improved with
Fibonacci heaps to O(|V| lg |V| + |E|).

• Randomized algorithm has O(|V| + |E|) expected time.

