Data Structures — LECTURE 13

Minumum spanning trees

Motivation

* Properties of minimum spanning trees
Kruskal's algorithm

» Prim’s algorithm

Chapter 23 in the textbook (pp 561—579).
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Motivation

» Given a set of nodes and possible connections with
weights between them, find the subset of
connections that connects all the nodedwhose
sum of weights is the smallest.

» Examples:

— telephone switching network
— electronic board wiring

» The nodes and subset of connections form a tree!

 This tree is called the Minimum Spanning Tree
(MST —0m1n WD 7Y)
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Example: spanning tree

Cost: 51
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Example: minimum spanning tree

Cost: 37
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Spanning trees

« Definition: Let G=(V,E) be a weighted connected
undirected graph. Apanning treef G is a
subsefl O E of edges, such that the sub-graph
G'=(V,T) is connected and acyclic.

* Theminimum spanning tre@ST) is a spanning
tree that minimizes the sum:
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Generic MST algorithm

Greedy strategygrow the minimum spanning tree
one edge at a time, making sure that the added egige
preserves the tree structure and the minimality
condition> add “safe” edges incrementally.

Generic-MSTG=(V,E))
T=10,
while (T is not a spanning tree &) do
choose a&afeedgee=(u,v) O E
T=TO{e}
returnT
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Properties of MST (1)

» Question: how to findafe edgesfficiently?

e Theorem 1Let ané=(u,v) be a minimum
weight edge with one endpointlihand the other

in V-U. Then there exists a minimum spanning treg

Tsuch thaeisinT.
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A cut is a partition oV
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Properties of MST (2)

Proof LetT be an MST. leis not inT, addeto T.
Becausd is a tree, the addition efcreates a cycle
which containg and at least one more edge
e=(u,Vv), whereu'OU andv'0 V-U.

Clearly,w(e) <w(e’) sinceeis of minimum weight
among the edges connectidgandV-U. We can
thus deleteg’ from T.

The resultingl” = T —{e’} [{ e} is a tree whose
weight is less or equal than thatfofw(T") <w(T).
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Properties of MST (3)

Theorem 2Let G=(V,E) be a connected undirected

graph andA a subset oE included in a minimum
spanning tred for G. Let U, V-U) be a cut that
respectd\ (no edge ofA crosses the cut), and let
e=(u,v) be a minimum Welght edge crossing {-U).
Theneis safe forA.
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Properties of MST (4)

Proof: Define an edge to be dight edgecrossing a cut if its
weight is the minimum crossing the cut.

Let T be an MST that includes, and assum& does not
contain the light edge= (u,V) (if it does,eis safe).
Construct another MST that includesA O {€}. The edge
forms a cycle with edges on the patromutovin T.
Sinceu andv are on opposite sides of the cut, there is at
least one edge = (x,y) in T on the pattp that also crosses
the cut. The edgé€ is not in A because the cut respegts
Sincee’ is on the unique path fromto vin T, removing it
breaksT into two components.
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Properties of MST (5)

Addinge = (u,v) reconnects the two components to form a
new spanning tree:
T=T-{€e} O{e}
We now show that’ is a MST. Sincee = (u,V) is a light
edge crossindd, V-U) ande’ = (x,y) also crosses this cut,
w(u,v) <w(x,y). Thus:
W(T") = w(T) —w(u,v) +w(x,y)
<w(T)
SinceT is an MST andv(T’) <w(T), thenw(T") =w(T)
andT is also an MST.
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Properties of MST (6)

Corollary. Let G=(V,E) be a connected undirected
graph andA a subset oE included in a minimum
spanning tred for G, and letC = (V, E.) be a
tree in the foresB, = (V,A). If eis a light edge
connectingC to some other component @),
theneis safe forA.

Proof The cut ¥, V-V,) respectd\, andeis a
light edge for this cut. Thereforejs safe.
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Two algorithms to find an MST

There are two ways of adding a safe edge:

1. Kruskal's algorithmthe setA is a forest and the
safe edge added is always the least-weight edg
in the graph connecting two distinct
components (Theorem 2).

2. Prim’s algorithmthe sefAis a tree and the safe
edge added is always the least-weight edge
connectingA to a vertex not ifA (Theorem 1).
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D

Kruskal’s algorithm

MST-KruskalG)
A<O

for each vertexV do
Make-Sety()
sort the edges i in non-decreasing weight order
for each edge = (u,v)LE do
if Find-Set(l) # Find-Sety) /* the trees are distinct *
then
A< ADO{e
Union(u,v)
return A
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/* combine two trees */

Example: Kruskal's algorithm
Cost: 37
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Analysis of Kruskal's algorithm

Caorrectnessfollows directly from Theorem 2.

Complexity Depends on the implementation of the sdt
operations! A naive implementation takagVv| E|).
— Sorting the edges tak€eX|E| Ig E|).

— thefor loop goes over every edge and performs two
Find-Set and one Union operation. These can be
implemented to tak®(1) amortized time.

The total running time i®(|E| Ig E|) = O(|E| Ig V|).
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Prim’s algorithm
MST-Prim(G, roof)
for each vertexJV do
keyV) € o; n[v] < null
keyroot) &€ 0;Q <V
while Q is not emptydo
u < Extract-Min@Q)
for eachv that is a neighbor af do
if vOQ andw(u,v) < keyv)
then n[v] €< u
keyv) € w(u,v) /*decrease value of key */
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Example: Prim’s algorithm

Cost: 37
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Analysis of Prim’s algorithm
Caorrectnessfollows directly from the Theorem 1.
Complexity Depends on the implementation of the

minimum priority queue. With a binary mean-heap,

we have:

— Building the initial heap takes(|V|).

— Extract-Min take®(lg |V|) per vertex> total O(|V| Ig M|)

— Thefor loop is execute®(|E|).

— Membership test i©(1). Decreasing a key 8(Ig |V|).
Overall, the running time ©(|V| Ig V| + [E| g |V]) =

O(IE lg V).
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Summary: MST

MST is a tree of all nodes with minimum total cost
Two greedy algorithms for finding MST:

— Kruskal's algorithm: edge-based. RunitjVv| E|).

— Prim’s algorithm: vertex-based. Runs @(|E| Ig |V/).
Complexity of Kruskal's algorithm can be improved
with Union-Find ADT toO(|E| Ig |V|),

Complexity of Prim’s algorithm can be improved witl
Fibonacci heaps t©(|V| Ig V| + E).

Randomized algorithm h&3(|V| + E|) expected time.
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