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Data Structures – LECTURE 13 

Minumum spanning trees

• Motivation

• Properties of minimum spanning trees

• Kruskal’s algorithm

• Prim’s algorithm

Chapter 23 in the textbook (pp 561—579).
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Motivation
• Given a set of nodes and possible connections with 

weights between them, find the subset of 
connections that connects all the nodes andwhose 
sum of weights is the smallest.

• Examples:
– telephone switching network
– electronic board wiring

• The nodes and subset of connections form a tree!
• This tree is called the Minimum Spanning Tree 

(MST – ������	���
�����
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Example: spanning tree
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Example: minimum spanning tree

b c d

h g f

ia e

8 7

1 2

11 14

4

8
7 6

2

4

9

10

Cost: 37

Data Structures, Spring 2006 © L. Joskowicz �

Spanning trees
• Definition: Let G=(V,E) be a weighted connected 

undirected graph. A spanning treeof G is a 
subset T ⊆ E of edges, such that the sub-graph 
G’=(V,T) is connected and acyclic.

• Theminimum spanning tree(MST) is a spanning 
tree that minimizes the sum:
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Generic MST algorithm
Greedy strategy: grow the minimum spanning tree 

one edge at a time, making sure that the added edge 
preserves the tree structure and the minimality
condition� add “safe” edges incrementally.

Generic-MST(G=(V,E))
T = ∅;
while (T is not a spanning tree of G) do

choose a safe edge e=(u,v) ∈ E
T = T ∪ { e}

return T
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Properties of MST (1)
• Question: how to find safe edgesefficiently?

• Theorem 1: Let              and e=(u,v) be a minimum 
weight edge with one endpoint in U and the other 
in V–U. Then there exists a minimum spanning tree 
T such that e is in T.

VU ⊂

U V–U V
T

e
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Properties of MST (2)
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A cut is a partition of V
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Properties of MST (2)
Proof: Let T be an MST. If e is not in T, add e to T. 

Because T is a tree, the addition of e creates a cycle 
which contains e and at least one more edge 
e’=(u’,v’), where u’∈U andv’∈ V–U.            

Clearly, w(e) � w(e’) since e is of minimum weight 
among the edges connecting U and V–U. We can 
thus delete e’ from T. 

The resulting T’ = T – { e’} ∪{ e} is a tree whose 
weight is less or equal than that of T: w(T’) ��w(T).
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Properties of MST (3)
Theorem 2: Let G=(V,E) be a connected undirected 

graph and A a subset of E included in a minimum 
spanning tree T for G. Let (U, V–U) be a cut that 
respects A (no edge of A crosses the cut), and let 
e=(u,v) be a minimum weight edge crossing (U, V–U). 
Then e is safe for A.

U V–U V
T

cut
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Properties of MST (4)
Proof:Define an edgee to be a light edgecrossing a cut if its 

weight is the minimum crossing the cut.

Let T be an MST that includes A, and assume T does not 
contain the light edge e = (u,v) (if it does, e is safe). 

Construct another MST T’ that includes A ∪ { e}. The edge 
forms a cycle with edges on the path p from u to v in T. 
Since u and v are on opposite sides of the cut, there is at 
least one edge e’ = (x,y) in T on the path p that also crosses 
the cut. The edge e’ is not in A because the cut respects A. 
Since e’ is on the unique path from u to v in T, removing it 
breaks T into two components. 
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Properties of MST (5)
Adding e = (u,v) reconnects the two components to form a 
new spanning tree: 

T’ = T –{e’} ∪ { e} 

We now show that T’ is a MST. Since e = (u,v) is a light 
edge crossing (U, V–U) and e’ = (x,y) also crosses this cut, 
w(u,v) � w(x,y). Thus: 

w(T’) =  w(T) – w(u,v) + w(x,y)

� w(T) 

Since T is an MST and w(T’) � w(T), then w(T’) = w(T) 
and T’ is also an MST.
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Properties of MST (6)
Corollary: Let G=(V,E) be a connected undirected 

graph and A a subset of E included in a minimum 
spanning tree T for G, and let  C = (VC, EC) be a 
tree in the forest GA = (V,A). If e is a light edge 
connecting C to some other component in GA, 
then e is safe for A.

Proof: The cut (VC, V–VC) respects A, and e is a 
light edge for this cut. Therefore, e is safe. 
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Two algorithms to find an MST

There are two ways of adding a safe edge:

1. Kruskal’s algorithm: the set A is a forest and the 
safe edge added is always the least-weight edge 
in the graph connecting two distinct 
components (Theorem 2). 

2. Prim’s algorithm: the set A is a tree and the safe 
edge added is always the least-weight edge 
connecting A to a vertex not in A (Theorem 1).
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Kruskal’s algorithm
MST-Kruskal(G)

A� ∅
for each vertex v∈V do

Make-Set(v)
sort the edges in E in non-decreasing weight order
for each edge e = (u,v)∈E do

if Find-Set(u) � Find-Set(v)  /* the trees are distinct */
then

A� A ∪ { e}
Union(u,v)                         /* combine two trees */

return A
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Example: Kruskal’s algorithm
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Analysis of Kruskal’s algorithm
Correctness: follows directly from  Theorem 2.

Complexity: Depends on the implementation of the set 
operations! A naïve implementation takes O(|V| |E|). 
– Sorting the edges takes O(|E| lg |E|).

– the for loop goes over every edge and performs two    
Find-Set and one Union operation. These can be 
implemented to take O(1) amortized time. 

The total running time is O(|E| lg |E|) = O(|E| lg |V|). 
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Prim’s algorithm
MST-Prim(G, root)

for each vertex v∈V do
key(v) � �; �[v] � null

key(root) � 0; Q� V
while Q is not emptydo
u� Extract-Min(Q)

for each v that is a neighbor ofu do

if v∈Q and w(u,v) < key(v) 

then �[v] � u
key(v) � w(u,v)  /*decrease value of key */ 
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Example: Prim’s algorithm
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Analysis of Prim’s algorithm
Correctness: follows directly from the Theorem 1. 

Complexity: Depends on the implementation of the 
minimum priority queue. With a binary mean-heap, 
we have:
– Building the initial heap takes O(|V|).

– Extract-Min takes O(lg |V|) per vertex � total O(|V| lg |V|) 

– The for loop is executed O(|E|).

– Membership test is O(1). Decreasing a key is O(lg |V|).

Overall, the running time is O(|V| lg |V| + |E| lg |V|) = 
O(|E| lg |V|).
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Summary: MST
• MST is a tree of all nodes with minimum total cost

• Two greedy algorithms for finding MST: 
– Kruskal’s algorithm: edge-based. Runs in O(|V| |E|). 

– Prim’s algorithm: vertex-based. Runs in  O(|E| lg |V|).

• Complexity of Kruskal’s algorithm can be improved 
with Union-Find ADT to O(|E| lg |V|), 

• Complexity of Prim’s algorithm can be improved with 
Fibonacci heaps to O(|V| lg |V| + |E|). 

• Randomized algorithm has O(|V| + |E|) expected time.


