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Data Structures – LECTURE 11 

Hash tables

• Motivation
• Direct-address tables
• Hash tables
• Open addressing
• Chaining
• Hash functions
• Perfect hashing
Chapter 11 in the textbook (pp 221—252).
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Motivation
• Many tasks require table operations: maintain a symbol table 

(dictionary) with access O(1) on averageto the entries.     
The keys need not have an order relation.

• Examples: 
– Programming language keywords for compiler (static)

– User IDs and passwords (dynamic)

– ID numbers, customer repair orders

• We want an ADT that supports Search, Insert, and Delete in 
O(1) on average with no order relation between elements. 

• Search trees require an order relation and take O(lg n).

• Hash tables allow general keys and take O(1) on average. 

Data Structures, Spring 2006 © L. Joskowicz
�

Hash tables: overview
• Generalization of arrays A[0..m–1].

• Instead of using the key k as an index to the array A, 
compute the array index with a hash function h(k):

A[k] � A[h(k)]

• The size of the hash table is proportional to the 
number of elements, and not to their range.

• The function h(k) need not be a one-to-one function.

• Need a mechanism to efficiently handle collisions. 
Two keys k1 and k2 collide when h(k1) = h(k2). 
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Examples
• Keywords of a programming language

– [for, if, then, …] � h(for) = 0; h(if) = 1; …

– Size of array is fixed; keyword set is static � array

• Car license plates
– Order number is arbitrary, some numbers might not exist

– Allocate a hash table of fixed size. 

– Hashing function: plate number modulo maximum size 
of hash table � h(55-080-32) = 5508032 mod 100,000

• User logins and passwords.
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Formalization
• Let U be a universe of keys of size |U|, K an actual set 

of keys of size n, T a hash table of size O(m), m� |U|.

• Let h(k) be a hash function: 

h(k): U �[0..m–1] 

that maps key values from U to indices in T.

h(k) is computed in O(|k|) = O(1).

• Elements T[i] in the hash table T = [0..m –1] are 
accessed in O(1) time. T[i] = null is an empty entry.   

• For simplicity, we assume that  U = {0, …, N –1}.
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Hashing: illustration
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Hashing: key issues
• What are good hashing functions?
• How do we deal with collisions?
• What assumptions are necessary to guarantee 

O(1) average timeaccess? 
• How about worst-caseaccess time? 
Main approaches:

1. Direct-address tables
2. Open-addressing
3. Chaining 

Issues: good hashing function; perfect hashing.
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1. Direct-address tables

��������������


• The hash table is an array of size m, T [0..m–1].
• The number of actual keys is n is close to m, or m is 

reasonably small and there is sufficient storage.
• The key k is the index into T, i.e, the hash function is 

h(k) = k (generalization: any one-to-one function).
• No collisions: access time is O(1) in the worst case.
• No need to store the key itself, only the data.  
• Problems:

– Can be very wasteful in memory
– Impractical when m is very large
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Hash tables
• Use a many-to-one hash function h(k) to map 

keys k to indices of T. 
• The set of actual keys K can be much smaller than 

the universe of keysU, i.e., m « |U|.

• Resolve collisions, i.e.,  h(k1) = h(k2) with either 
1. Open addressing
2. Chaining
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Simple uniform hashing and load factor

Simple uniform hashing assumption: each element is 
equally likely to hash into any of the m slots, 
independently of the other elements. 

Definition: the load factor � of a hash table T with m
slots is defined as � = n/m, where n is the number 
of stored elements, and  0 � � � 1.

Note: The probability of a collision is �.
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2. Collision resolution by open addressing

• All keys ki that map into the same slot T[h(ki)] are 
mapped to the next available slot in the table. Looking 
for the next available spot is called probing. 

• Slots contain the element themselves, or null.

• The hash function is augmented with a probe number:

h(k,i): U × [0..m–1] �[0..m–1]

• Probe sequence: h(k,0), h(k,1)… h(k,i)
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Open addressing operations
• Insert: probe the hash table until an empty slot is 

found. The sequence of probes depends on the 
key. If there is no empty slot after m probes, the 
table is full. 

• Search:probe the same sequence of slots as insert 
and stops either when the key is found (success) or 
when an empty slot is reached (fail).

• Delete: cannot just delete the key!  Instead, mark 
the slot as “deleted” so that probing can go over it.

Complexity: length of the probing sequence.
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Hashing functions: examples

• Radix hashing

• Division

• Multiplication

• …
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The division method
• Let U = {0,1,2, …, N-1} a set of natural numbers. 

• Map a key k into one of m slots by taking the 
reminder of k divided by m:

h(k) = k mod m

• For this to work properly, avoid choosing m which is 
a power of 2 (m = 2p) since this is like selecting the 
lowest p bits, which ignores useful discriminating 
information.

• Heuristic:pick m to be a prime number far from a 
power of two.
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Example: the division method
• Suppose |U| = n =  2000 and we can tolerate up to 3 

collisions per key. 

• What should be the size m of the hash table?

• We have that floor(2000/3) = 666; a prime number 
close to it and not a power of two is 701. 

• The hash function is thus:

h(k) = k mod 701

• The keys 0, 701, and 1402 will all map to 0.
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The multiplication method
• Map a key k into one of m slots by first multiplying 

it by a constant a in the range 0 < a < 1, extracting 
the fractional part of ka, and then taking the integer 
part of the result multiplied by m:

( ) � �( )� � 10, <<−= akaakmkh
• This method is less sensitive to the values of m

because the “random” behavior comes from the fact 
that most actual key sets have no correlation with a.

• Heuristic:pick m to be a power of 2 and a to be close  
to the golden ratio: ( ) ...6180.02/15 =−=a
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Probing strategies
Three probing techniques:

1. Linear probing
2. Quadratic probing
3. Double hashing

• None of them fulfils the uniform hashing
assumption: each key is equally likely to have 
any of the m! permutations of (0..m–1) as its 
probe sequence.

• However, they approximate it. 
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Linear probing
The hash function is:

h(k, i) = (h’(k) + i ) mod m
whereh’(k) is an auxiliary probe-independent hash 

function.
Given a key k, the probing sequence is:

T[h’(k)], T[h’(k)+1], … T[m–1], T[0], T[1] … T[h’(k)–1]

Problem: primary clustering. Long runs of occupied 
slots build up, because an empty slot preceeded
by i full slots gets filled with probability (i+1)/m
� increases average search time. Generates m
distinct probing sequences.
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Quadratic probing
The hash function is:

h(k, i) = (h’(k) + c1i + c2i
2) mod m

wherec1 andc2 are constants � 0 and h’(k) is an 
auxiliary hash function.
In contrast with linear probing, the probed positions 

are offset by amounts that depend in a quadratic 
manner on the probe number i.

Generates m probing sequences. Suffers from 
secondary clustering: keys that hash to the same 
initial slot will probe the same alternative cells.
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Double hashing
The hash function is:

h(k, i) = (h1(k) + ih2(k)) mod m
where h1(k) andh2(k) are two hash functions.
The first probe is to T[h1(k)]. Successive probes are offset 

from the previous position by h2(k) mod m.

The value h2(k) must be prime to the hash table of size m
so the entire table is searched.

Example of a choice of functions:
h1(k) = k mod m
h2(k) = 1 + (k mod m’)         with m’ < m

Generates �(m2) probe sequences.
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Open addressing: analysis

Theorem: Given an open-address hash table with load 
factor � = n/m < 1, the expected number of probes, 
assuming uniform hashing is:

– at most 1/(1–�) in an unsuccessful search 

– at most 1/� ln (1/(1–�)) in a successful search 

• When � is constant, the search time is O(1) �
bound on the number of probes that will happen.
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3. Collision resolution by chaining
�����

• All keys ki that map into the same slot T[h(ki)] are 
placed in a linked list Lj , j = h(ki). 

• Slots contain pointers to the linked lists Lj

• Insert: new keys are inserted at the headof the list 
Lj � worst-case time O(1).

• Search/Delete: find/delete the element with key k
in linked list Lj � worst-case time proportional to 
length of longest list.
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Chaining: illustration
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Chaining: simple uniform hashing

Theorem: In a hash table with chaining, under the 
assumption of simple uniform hashing, both 
successful and unsuccessful searches take  expected 
time �(1+�) on the  average, where � is the hash 
table load factor. 
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The simple uniform hashing assumption
• Is the simple uniform hashing assumption reasonable?
• Suppose we pick a function h. Then it cannot be that this h

distributes the keys k approximately uniformly over the table 
for ALL possible sets of keysin the universe U., i.e, h cannot 
be a good hash function for all possible key sets K!  

• The reason is as follows.  We know that h maps the universe 
U, which is huge, into m possible indices. Consider the set S
of elements k and the index i such that h(k) = i.  There must 
exist one such index i for which more than 1/m of the 
possible keys go to. So there is one index to which we direct 
|U|/m possible keys! Since |U| >> m, this is a larger number! 

• Suppose we are now given n keys from S. They will all go to 
the same slot, yielding the worst case behavior!
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Good hash functions
• The performance of hashing critically depends on the 

properties of the hash function and the actual key set patterns.
• A hash function that satisfies the simple uniform hashing 

assumption is a good one!
• However, it is typically not possible to check if the 

assumption holds, since we usually do not know the 
probability distribution according to which the keys are 
drawn, or keys may not be drawn independently.

• Two approaches:
– Heuristic: Look for functions that do well “most of the time”
– Random: Pick hash function randomly for provably good           

performance
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Universal hashing
• Idea: choose the hash function randomlyin a way 

that is independent of the keys.
• Yields a provablygood performance on average.
• It guarantees that no single input will always have 

the worst-case behavior (as for QuickSort).
• Issue:what should be the set of hash functions from 

which to choose? There are infinitely many 
functions!

• Choose from a finite collection of universal hash 
functions.
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Universal hashing (1)
• Motivation: we want the simple uniform hashing 

assumption to hold, so that on average, the keys will 
be hashed uniformly.

• Properties of simple uniform hashing: 
– For any two keys k1 and k2, and any two slots y1 and y2, 

the chance that h(k1) = y1 and h(k2) = y2 is exactly 1/m2. 

– For two keys k1 and k2, the chance that they collide, that 
is h(k1) = h(k2) is exactly 1/m. 

• We want a family of hash functions H that has the 
same chance of collision as simple uniform hashing.
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Universal hashing (2)
Definition: Let H be a finite collection of hash 

functions that map a given universe U of keys into 
the range {0,1,…,m –1}. 
H is said to be universalif for every pair of distinct 
keys k1 and k2 in U, the number of hash functions h
in H, for whichh(k1) = h(k2) is at most |H|/m.

• In other words,  the chance of collision between 
distinct keys k1 and k2 is no more than the chance 
1/m of a collision if h(k1) and h(k2) were randomly 
and independently chosen from the set {0,1,...,m–1}.  
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Expected list length in hash table

Theorem: Let h be a hash function chosen from a 
universal collection of hash functions and used to 
hash n keys into a table T of size m, using chaining 
resolution. Let � = n/m be the load factor. 
– if k is not in the table, the expected length of the list that 

k is hashed to is at most �.

– if k is in the table, the expected length of the list that k is 
hashed to is at most  1+�.
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Proof outline

• k is not in the table: 1/m of the keys will be hashed to 
that list, and so there will be on average � keys in the 
list.

• k is in the table: out of the n –1  remaining keys, 1/m
on average will go to the same slot. So on average we 
have at most (1 + (n –1)/m) < (1 + n/m) = 1+�.
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Corollary: using universal hashing and collision 
resolution by chaining in a table with m slots, 
it takes expected time �(n) to handle any 
sequence of n insert, search, and delete 
operations containing O(m) insert operations.

Proof: because the number of insertions n = O(m), the 
load factor � = O(1). So by the previous theorem, 
each operation takes O(1)  time on average and �(n) 
total.

Complexity of operation sequences
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Construction of universal classes (1)
• Choose a prime number p > m and larger than the 

range of the actual keys K . Let Zp denote the set 
{0,…p –1}, and let a and b be two numbers from Zp.

• Consider the function:
ha,b(k) = (ak +b) modp

• The collection of all such hash functions is: 
Hp,m= { ha,b | a,b∈Zp and a � 0 }

• To choose a random hash function, we pick a,b
randomly from Zp.
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• Claim: Pick any two different keys, k1 and k2.  For any two 
elements x1 and x2 in Zp, the chance that k1 will be hashed to 
x1 and k2 to x2 is exactly 1/p2.

• Proof: we can write two equations with variables a and b:

ak1 + b = x1 mod p

ak2 + b = x2 mod p

These equations always have a unique solution when p is 
prime! For any two x1 and x2, there exists a hash function 
with parameters a and b which maps k1 to x1 and k2 to x2. 

• Thus, the chance of picking that function is exactly the 
chance of picking the correct a and b, which is exactly 1/p2.  

Construction of universal classes (2)
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Since the range of keys can be very large, we 
correct the hash function to reduce it to m keys by 
taking an additional modulo m:

ha,b(k) = ((ak +b) modp) modm 

The family 

Hp,m= { ha,b: = a, b in Zp}

is then a universal family of hash functions. 

Construction of universal classes (3)
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Proof (1)
• Pick k1 and k2, two different keys. By the previous 

corollary, for any two values x1 and x2, in Zp, the 
chance that 

(ak1 + b) mod p = x1

(ak2 + b) mod p = x2 

is exactly 1/p2.
• Now consider y1 and y2 in {0,…m –1}. We want to 

find the chance that 
x1 = y1 mod m 

x2 = y2 mod m 
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Proof (2)
• How many pairs x1 and x2 satisfy this for a fixed pair 

of y1 and y2?  Each equation is satisfied by at most 
p/m+1 solutions (one in each window of length m, 
and there are at most p/m + 1 such windows from 0 to  
p –1). Overall, there are at most O((p/m))2 such pairs.

• So what is the chance that k1 is hashed into x1 and k2

into to x2? Each possible pair y1 and y2 is reached 
with probability 1/p2, and there are at most (p/m)2

appropriate pairs, so the overall probability is at    
most 1/m2.

Data Structures, Spring 2006 © L. Joskowicz
��

Universal hashing: summary
• Universal Hashing gives O(1) performance on 

averagefor anyset of actual keys � even if there 
are “crazy” patterns in the key set, we will manage 
to hash them nicely on average. 

• The chance that the performance is really bad, (say a 
factor of 100 times the average) is really small (say, 
a chance of 1/100). 

• However, if the set is dynamic, we do not know in 
advance whether the function will be good or not…. 
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Perfect hashing �
�
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• Universal hashingguarantees O(1) average 
performance for any key set.                             

• Can we do better? Yes, in some cases! 

• Perfect hashing guaranteesO(1) worst-case 
performance  for a statickey set, in which once the 
keys are stored, they never change.

• Examples of static key sets: reserved words in a 
programming language, file names on a CD-ROM. 
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Perfect hashing �
�
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Idea:Use a two-level hashing scheme with universal 
hashing at each level. 

Level 1:Hashing with chaining. The n keys of K are 
hashed to the m slots of T using hash function h(k) 
chosen from a universal class. 

Level 2:Instead of making a list of keys hashing into 
slot j, use a secondary hash table Sj with associated 
hash function hj(k). Choose hj(k) to ensure that no 
collisions occur, and the size of Sj as the square of 
the number nj of keys hashing to slot j: |Sj| = nj

2.
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Example: perfect hashing
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Perfect hashing: analysis
Theorem: If we store n keys in a (primary) hash table 

of size  m = n2 using a hash function h(k) randomly 
chosen from a universal class of hash functions, 
then the probability of a collision is < ½.

Proof: There are n(n–1)/2 pairs of keys that may 
collide, and each pair collides with probability 1/m 
whenh is chosen from a universal class of hash 
functions. When m = n2 we have:

Therefore, it is more likely NOT to have a collision!
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Perfect hashing: analysis
• When n is large, a hash table of size m = n2 is 

excessive.
• To reduce the overall storage needs we adopt the 

following scheme:
– Level 1: T is of size m = n
– Level 2: Sj is of sizemj= nj

2

• Since we ensure that there are no collisions in the 
secondary hash tables by picking the hash functions 
appropriately, the worst-case access time is constant.

• What is the expected combined size of all hash tables?
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Perfect hashing: analysis space 
• The size of the primary hash table is O(n). 
• The expected size of all the secondary hash tables is: 

• The term in the sum is exactly the total number of collisions!
• On average it is 1/m times the number of pairs.
 Since m = n, 

it is at most n/2. 
• Therefore, the expected total space for the secondary hash 

tables is less than 2n. 
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Summary
• Hashing generalizes the array ADT. 
• It achieves constant time access and linear storage 

for dynamic key sets.
• Hashing collisions are resolved by open addressing

or chaining. 
• Universal hashingfunctions guarantee  expected 

average access time. 
• Perfect hashingachieves worst case constant access 

time for static key sets.
• Hashing is NOT good for order queries (maximum, 

successor) since it has no key order relation.


