Data Structures — LECTURE 11

Hash tables

« Motivation
« Direct-address tables
« Hash tables
¢ Open addressing
¢ Chaining

¢ Hash functions

¢ Perfect hashing

Chapter 11 in the textbook (pp 221—252).

1
Data Structures, Spring 2006 © L. Joskowicz

Motivation

« Many tasks require table operations: maintain a synatide t
(dictionary) with acces®(1) on averagéo the entries.
The keys need not have an order relation
* Examples
— Programming language keywords for compiler (static)
— User IDs and passwords (dynamic)
— ID numbers, customer repair orders
* We want an ADT that supports Search, Insert, and Delete
O(1) on average with no order relation between elements.
« Search trees require an order relation and @{lgen).

« Hash tables allow general keys and t@k&) on average.

2
Data Structures, Spring 2006 © L. Joskowicz

Hash tables: overview
» Generalization of array&[0..m-1].

« Instead of using the kdyas an index to the arrdy
compute the array index with_a hash functik):
ATKl > Alh(K)]
* The size of the hash table is proportional to the
number of elements, and not to their range.
 The functionh(k) need not be a one-to-one function

* Need a mechanism to efficiently handle collisions.
Two keysk; andk, collide whenh(k,) = h(k,).

3
Data Structures, Spring 2006 © L. Joskowicz

Examples

» Keywords of a programming language
— [for, if, then, ...] 2 h(for) = 0; h(if) = 1; ...
— Size of array is fixed; keyword set is staBcarray
¢ Car license plates
— Order number is arbitrary, some numbers might not ex
— Allocate a hash table of fixed size.

— Hashing function: plate number modulo maximum size
of hash table> h(55-080-32) = 5508032 mod 100,000

 User logins and passwords.

4
Data Structures, Spring 2006 © L. Joskowicz

Formalization
» LetU be a universe of keys of siz¢||K an actual set
of keys of sizen, T a hash table of siz8(m), m< |U].
 Leth(k) be a hash function:
h(k): U >[0..m-1]
that maps key values frobhto indices inT.
h(k) is computed irO(k|) = O(1).
* ElementsI[i] in the hash tabl& = [0.m-1] are
accessed i@(1) time.T[i] = null is an empty entry.
* For simplicity, we assume thad = {0, ..., N-1}.

5
Data Structures, Spring 2006 © L. Joskowicz

Hashing: illustration
T = hash table

[|o-
 4-f1] datel

U = universe of keys

®~N P OA W

K = actual keys

6
Data Structures, Spring 2006 © L. Joskowicz

Hashing: key issues
* What are good hashing functions?
* How do we deal with collisions?
* What assumptions are necessary to guarantee
O(1) average timaccess?
* How about worst-casaccess time?
Main appr oaches:
1. Direct-address tables
2. Open-addressing
3. Chaining
Issues. good hashing function; perfect hashing.

Data Structures, . Spring 2006 © L. Joskowicz

1. Direct-address tables

W NV NS
The hash table is an array of sipeT [0..m-1].

» The number of actual keysrids close tan, or mis
reasonably small and there is sufficient storage.

* The keyk s the index intdr, i.e, the hash function is
h(k) =k (generalization: any one-to-one function).

* No collisions: access time @(1) in the worst case.
» No need to store the key itself, only the data.
* Problems:

— Can be very wasteful in memory

— Impractical whem is very large

Data Structures, . Spring 2006 © L. Joskowicz

Hash tables
* Use a many-to-one hash functiofk) to map
keysk to indices ofT.

* The set of actual keys can be much smaller than
the universe of keys, i.e.,m«|U]|.

* Resolve collisions, i.e.h(k;) = h(k,) with either
1. Open addressing
2. Chaining

Data Structures, . Spring 2006 © L. Joskowicz

Simple uniform hashing and load fact

Simple uniform hashing assumptiaach element is
equally likely to hash into any of theslots,
independently of the other elements.

Definition: theload factor o of a hash tabl& with m
slots is defined as = n/m, wheren is the number
of stored elements, and<x < 1.

Note The probability of a collision is.

Data Structures, . Spring 2006 © L. Joskowicz

2. Collision resolution by open addressinl;

* All keysk; that map into the same slfth(k)] are
mapped to the next available slot in the table. Look]
for the next available spot is called prohing

Slots contain the element themselves)uit.
The hash function is augmented with a probe numk
h(k,i): U x [0.m-1] =[0..m-1]

» Probe sequencé(k,0), h(k,1)... h(ki)

Data Structures, . Spring 2006 © L. Joskowicz

ng

er:

Open addressing: illustration
T = hash table

e

U = universe of keys

h(20)=0

5
16
7
8

K = actual keys

Data Structures, . Spring 2006 © L. Joskowicz

Open addressing operations

* Insert probe the hash table until an empty slot is
found. The sequence of probes depends on the
key. If there is no empty slot aftarprobes, the
table is full.

» Searchprobe the same sequence of slots as insg
and stops either when the key is found (success
when an empty slot is reached (fail).

» Delete cannot just delete the key! Instead, mark|
the slot as “deleted” so that probing can go over

Complexity length of the probing sequence.

Data Structures, . Spring 2006 © L. Joskowi

or

Hashing functions: examples
¢ Radix hashing
« Division
« Multiplication

Data Structures, . Spring 2006 © L. Joskowicz

The division method

* LetU={0,1,2, ...,N-1} a set of natural numbers.

* Map a keyk into one ofmslots by taking the

reminder ofk divided bym:
h(k) =k modm

* For this to work properly, avoid choosingwhich is
a power of 21 = 2¥) since this is like selecting the
lowestp bits, which ignores useful discriminating
information.

* Heuristic:pick mto be a prime number far from a
power of two.

Data Structures, . Spring 2006 © L. Joskowicz

Example: the division method
» Supposel| =n= 2000 and we can tolerate up to 3
collisions per key.
* What should be the size of the hash table?

* We have thalloor(2000/3) = 666; a prime number
close to it and not a power of two is 701.

* The hash function is thus:
h(k) =k mod 701
* The keys 0, 701, and 1402 will all map to O.

Data Structures, . Spring 2006 © L. Joskowicz

The multiplication method

* Map a keyk into one ofmslots by first multiplying
it by a constana in the range 0 @ < 1, extracting
the fractional part oka, and then taking the integer
part of the result multiplied by

h(k)=|m(ka-|ka])|, 0O<a<1
» This method is less sensitive to the valuemsof
because the “random” behavior comes from the f§
that most actual key sets have no correlation aith

* Heuristic:pick mto be a power of 2 aralto be close
to the golden ratioa= (V5 -1)/2=0.6180..

17
Data Structures, . Spring 2006 © L. Joskowicz

Probing strategies
Three probing techniques:
1. Linear probing
2. Quadratic probing
3. Double hashing

* None of them fulfils theiniform hashing
assumption: each key is equally likely to have
any of them! permutations of (0m-1) as its
probe sequence.

¢ However, they approximate it.

Data Structures, . Spring 2006 © L. Joskowicz

Linear probing Quadratic probing

The hash function is: The hash function is:
.h(k,)= (h’(k) +1) qum h(k, i) = (W"(k) + c,i + c,i?) modm
whefreh’t(k) is an auxiliary probe-independent hash wherec, andc, are constantg 0 andh’(k) is an
unction.

auxiliary hash function.

Given a key, the probing sequence is: In contrast with linear probing, the probed positions,

TIR(K], T (K)+1], ... TIm=1], T[O], T[1] ... T[h'(K)-1] are offset by amounts that depend in a quadratic
Problem primary clustering Long runs of occupied manner on the probe number
slots build up, because an empty slot preceeded Generatesn probing sequences. Suffers from
byi full slots gets filled with probabilityi¢1)/m secondary clusteringeys that hash to the same
= increases average search time. Genenates initial slot will probe the same alternative cells.

distinct probing sequences.

Data Structures, . Spring 2006 © L. Joskowicz Data Structures, . Spring 2006 © L. Joskowicz

Double hashing Open addressing: analysis
The hash function is:
h(k, i) = (hy(K) + ih,(K)) modm Theorem Given an open-address hash table with loadl
whereh, (k) andh,(k) are two hash functions. factora = n/m < 1, the expected number of probes,
The first probe is to T;(K)]. Successive probes are offset assuming uniform hashing is:

from the previous position By(k) modm.

;] —at most 1/(1e) in an unsuccessful search
The valueh,(k) must be prime to the hash table of size

so the entire table is searched. —at most 1 In (1/(1-)) in a successful search
Example of a choice of functions: ¢ Whena is constantthe search time i©(1) >
hy(k) = k modm bound on the number of probes that will happen.

hy(K) =1 + k modm’) withm' < m
Generate®(m?) probe sequences.

Data Structures, . Spring 2006 © L. Joskowicz Data Structures, . Spring 2006 © L. Joskowicz

3. Collision resolution by chaining Chaining: illustration

NI , T = hash table
U = universe of keys

* All keysk; that map into the same slfth(k)] are
placed in a linked list; , j = h(k;).

* Slots contain pointers to the linked ligts

« Insert new keys are inserted at the he#the list
L; > worst-case timé&(1).

« Search/Deletefind/delete the element with key
in linked listL; - worst-case time proportional to
length of longest list.

o2]
2

K = actual keys

Data Structures, . Spring 2006 © L. Joskowicz Data Structures, . Spring 2006 © L. Joskowicz

Chaining: simple uniform hashing

Theorem In a hash table with chaining, under the
assumption of simple uniform hashing, both

successful and unsuccessful searches take expedted

time ®(1+a) on the average, whessds the hash
table load factor.

Data Structures, Spring 2006 © L. Joskowicz

The simple uniform hashing assumption
¢ |s the simple uniform hashing assumption reas@tabl

« Suppose we pick a functidn Then it cannot be that thiis
distributes the keyk approximately uniformly over the table
for ALL possible sets of keyis the universéJ., i.e,h cannot
be a good hash function for all possible key Kéts

¢ The reason is as follows. We know thahaps the universe
U, which is huge, inton possible indices. Consider the Set
of elementsk and the index such thah(k) =i. There must
exist one such indexfor which more than i of the
possible keys go to. So there is one index to wivellirect
|U]/m possible keys! Sinc&J| >>m, this is a larger number!

« Suppose we are now giverkeys fromS. They will all go to
the same slot, yielding the worst case behavior!

Data Structures, Spring 2006 © L. Joskowicz

26

Good hash functions

* The performance of hashing critically dependsthen t
properties of the hash function and the actualdegypatterns

* A hash function that satisfies the simple unifdrashing
assumption is a good one!

« However, it is typically not possible to checkhe
assumption holds, since we usually do not know the
probability distribution according to which the lsegre
drawn, or keys may not be drawn independently.

» Two approaches:

— Heuristic: Look for functions that do well “most of the time”
— Random: Pick hash function randomly for provably good
performance

Data Structures, Spring 2006 © L. Joskowicz

Universal hashing
« ldea choose the hash functioandomlyin a way
that is independent of the keys.
Yields aprovablygood performance on average

* |t guarantees that no single input will always have
the worst-case behavior (as for QuickSort).

* Issue:what should be the set of hash functions frorn
which to choose? There are infinitely many
functions!

» Choose from dinite collection ofuniversal hash
functions

-

Data Structures, Spring 2006 © L. Joskowicz

Universal hashing (1)

» Motivation: we want the simple uniform hashing
assumption to hold, so that on average, the keys will
be hashed uniformly.

 Properties of simple uniform hashing
— For any two keyg; andk,, and any two slotg, andy,,

the chance thdt(k,) =y, andh(k,) =y, is exactly 1#¥?.
— For two key; andk,, the chance that they collide, that
is h(ky) = h(k,) is exactly 1.

* We want a family of hash functiométhat has the

same chance of collision as simple uniform hashir]g.

29

Data Structures, Spring 2006 © L. Joskowicz

Universal hashing (2)

Definition: Let H be a finite collection of hash
functions that map a given univerdeof keys into
the range {0,1,..m-1}.

H is said to bauniversalif for every pair of distinct
keysk, andk, in U, the number of hash functiohs
in H, for which h(k,) = h(k,) is at mostHf|/m.

* In other words, the chance of collision between
distinct key, andk, is no more than the chance
1/mof a collision ifh(k,) andh(k,) were randomly
and independently chosen from the set {0,f=1}.

30

Data Structures, Spring 2006 © L. Joskowicz

Expected list length in hash table

Theorem Let h be a hash function chosen from a
universal collection of hash functions and used to
hashn keys into a tabld@ of sizem, using chaining
resolution. Letx = n/m be the load factor.

—if kis not in the table, the expected length of thiettiat
kis hashed to is at most

—if kis in the table, the expected length of the liat khis
hashed to is at most a+

Data Structures, . Spring 2006 © L. Joskowicz

Proof outline

kis not in the tablel/m of the keys will be hashed to
that list, and so there will be on averageeys in the
list.

» Kis in the tableout of then—1 remaining keys, i
on average will go to the same slot. So on average
have at most (1 (-1)/m) < (1 +n/m) = 1+o.

Data Structures, . Spring 2006 © L. Joskowicz

Complexity of operation sequences

Corollary using universal hashing and collision
resolution by chaining in a table withslots,
it takes expected tim@(n) to handle any
sequence dfi insert, search, and delete
operations containin@(m) insert operations.

Proof because the number of insertions O(m), the
load factora. = O(1). So by the previous theorem,
each operation tak&3(1) time on average ar@(n)
total.

Data Structures, . Spring 2006 © L. Joskowicz

Construction of universal classes (1

» Choose a prime numbpr>mand larger than the
range of the actual keys. LetZ, denote the set
{0,...p-1}, and leta andb be two numbers frord,,.

« Consider the function:
h, (K) = (ak +b) modp

» The collection of all such hash functions is:
Hpom= {hapla,blZ, anda#0 }

* To choose a random hash function, we pigk
randomly fromZ,,.

Data Structures, . Spring 2006 © L. Joskowicz

Construction of universal classes (2

» Claim: Pick any two different keyg, andk,. For any two
elements; andx, in Z,,, the chance thdg will be hashed to
x; andk, to x, is exactly 1p2.

e Proof we can write two equations with variabeandb:

ak, + b =x,modp

ak,+ b =x,modp
These equations always have a unigue solution wlen
prime! For any twox, andx,, there exists a hash function
with parametera andb which maps, to x; andk; to x,.

» Thus, the chance of picking that function is elaitte
chance of picking the correatandb, which is exactly 12

35
Data Structures, . Spring 2006 © L. Joskowicz

Construction of universal classes (3

Since the range of keys can be very large, we
correct the hash function to reduce itrikkeys by
taking an additional modulm:

h, ,(k) = ((@k +b) modp) modm
The family
Hom= {hyy =a, binZ}

is then a universal family of hash functions.

A"

Data Structures, . Spring 2006 © L. Joskowicz

we

)

Proof (1)

* Pickk, andk,, two different keys. By the previous
corollary, for any two values, andx,, inZ, the
chance that

(ak, + b) modp = x;
(ak,+ b) modp =x,
is exactly 12

» Now considery, andy,in {0,...m-1}. We want to
find the chance that

X; =Yy, modm
X,=y,modm

Data Structures, . Spring 2006 © L. Joskowicz

Proof (2)

« How many pairx; andx, satisfy this for a fixed pai
of y; andy,? Each equation is satisfied by at most
p/m+1 solutions (one in each window of length

and there are at mggtm + 1 such windows from 0 tg
p-1). Overall, there are at mas{(p/m))? such pairs.
So what is the chance thHgtis hashed inta, andk,
into tox,? Each possible pay andy, is reached
with probability 1/p?, and there are at mogtif)2
appropriate pairs, so the overall probability is at
most 1.

Data Structures, . Spring 2006 © L. Joskowicz

Universal hashing: summary

* Universal Hashing give®(1) performance on
averagdor anyset of actual keys even if there
are “crazy” patterns in the key set, we will manage
to hash them nicely on average

» The chance that the performance is really bad, (sgy a

factor of 100 times the average) is really small (say,
a chance of 1/100).

« However, if the set is dynamic, we do not know in
advance whether the function will be good or not..|.

Data Structures, . Spring 2006 © L. Joskowicz

Perfect hashingl)

« Universal hashinguarantee®(1) average
performance for any key set.

» Can we do better? Yes, in some cases!

« Perfect hashing guarante®€l) worst-case
performance for a statiey set, in which once the
keys are stored, they never change.

» Examples of static key sets: reserved words in a
programming language, file names on a CD-RON.

Data Structures, . Spring 2006 © L. Joskowicz

Perfect hashing?)

Idea:Use a two-level hashing scheme with universal
hashing at each level.

Level 1:Hashing with chaining. The keys ofK are
hashed to then slots of T using hash functioh(k)
chosen from a universal class.

Level 2:Instead of making a list of keys hashing int
slotj, use a secondary hash ta§leith associated
hash functiorh(k). Choosen(k) to ensure that no
collisions occur, and the size §fas the square of
the numben; of keys hashing to slgt|S| = n2

O

41
Data Structures, . Spring 2006 © L. Joskowicz

Example: perfect hashing
Primary hash functiarh(k) = ((3k + 42) mod 101) mod 9
Secondary has functiohy(k) = ((ak +b;) modp) modm

- " ~|-e-{1]0]o[10
l?1_0 opg7 | 1|1 ThA
20,6070.75y |12 14l10]18]e0]7s[/[/]
ma;b S

HE

|/]a

7""5""

/e

| #fol23ss[a0 [1T/ [37] 1T 1] 1] 1]22]
8 '0 12 3 45 6 7,8

Data Structures, . Spring 2006 © L. Joskows

Perfect hashing: analysis Perfect hashing: analysis

Theorem If we storen keys in a (primary) hash table
of size m=n? using a hash function(k) randomly
chosen from a universal class of hash functions,
then the probability of a collision is < Y.

Proof There aren(n—1)/2 pairs of keys that may
collide, and each pair collides with probabilitynl/
whenhis chosen from a universal class of hash

Whenniis large, a hash table of sime= n? is
excessive.

To reduce the overall storage needs we adopt the
following scheme:

—Level I Tis of sizem=n

- Level 2 §'is of sizem= n;?

functions. Whemm = n2we have: * Since we ensure that there are no collisions in the
n(n-1) 2 2 secondary hash tables by picking the hash functions
T% = % < 2nn2 = % appropriately, the worst-case access time is constant.

- . . * What is the expected combined size of all hash tahles
Therefore, it is more likely NOT to have a collision!

43 44
Data Structures, Spring 2006.© L. Joskowicz Data Structures, Spring 2006.© L. Joskowicz

Perfect hashing: analysis space _ Summary
 The size of the primary hash tabled&). Hashing generalizes the array ADT.
» The expected size of aII the secondary hash téales It achieves constant time access and linear storag

z n? = Z(n +omD (n 1 for dy_namlc !(gy sets. _
» Hashing collisions are resolved bgen addressing
o -1 or chaining
n; (n; -1 . . .
=n+ 22(%) « Universal hashinfunctions guarantee expected
+ The term in the sumJi_slexactIy the total numbecafisions! average access time.
+ On average it is fitimes the number of pairsSincem=n, » Perfect hashingchieves worst case constant accegs
it is at mosin/2. time for static key sets.

Therefore, the expected total space for the seugritash Hashing is NOT good for order queries (maximum
tables is less tham2 successor) since it has no key order relation.

45 46
Data Structures, Spring 2006 © L. Joskowicz Data Structures, Spring 2006 © L. Joskowicz

