Data Structures — LECTURE 4

Comparison-based sorting

¢ Why sorting?

« Formal analysis of Quick-Sort

e Comparison sorting: lower bound

e Summary of comparison-sorting algorithms

Data Structures, Spring 2006 © L. Joskowicz 1

Sorting
Definition
Input A sequence afinumbersA = (a,, a,, ...
Output A permutation (reordering)
(a,...,a’,) suchthata’;<...<a’,
Why sorting?
— Fundamental problem in Computer Science
— Many algorithms use it as a key subroutine
— Wide variety with a rich set of techniques
— Known lower bounds, asymptotically optimal
— Many programming and implementation issues come u

18

Data Structures, Spring 2006 © L. Joskowicz 5

Sorting algorithms

Two types of sorting algorithms:
1. Comparison sortinghe basic operation is the
comparison between two elements; < g
— Merge-SortInsertion-Sort Bubble-Sort
— Quick-Sort analysis with recurrence equations

— Lower bounds for comparison sorting:
T(n) =Q(n Ig n) andS(n) = Q(n)

Quick-Sort

Uses a “Divide-and-Conquer” strategy:

« Split A[Left..Righ} into A[Left..Middle 1] andA[Middle+1. Righf
* Elements ofA[Left.Middle -1] are_smaller or equ#han those in
. AlMiddle+1. Righf

* Sort each part recursively

Quick-Sort@, Left Right

1. if Left<Right then do

— Heap Sorwith priority queues (later) 2. Middle € Partition@, Left, Righi)
2. N(I)Rn cqmpa(rjij_o_n-b;asedoes_not use comparisons 3. Quick-Sortd, Left Middle 1)

- equires additional assumptions e . .

— Sorting in linear timeT(n) =Q(n) andS(n) = Q(n) 4. Quick-Sorth, Middle +1, Right

Partition Example (1) .

Rearranges the array and returns the partitioning indgx Pivot T¥iteration
The partition is théeftmost element larger than the lasf 2 ‘ 8‘ 7 ‘ 1 ‘ 3‘ 5 ‘ 614 ‘
Partition, Left Righ) 1] R
1. Pivot< AlRight 218 H 7 ‘ 1 ‘ 3‘ 5 ‘ 6|4 ‘ 2 swapped with itsel
2. i€ Left-1 t Li 1 i 1 R
3. for j € Leftto Right-1
4. doif (A[j] <Pivoy 2|8[7][1]3]5]6]4]
5. theni <i+1 1 . 1 1
6 Exchanged{il, Alj) | R
7. Exchange(i+1], A[Right) 2|s8|7]|1]3|5]|6]4a]
8 returni+1 1 Li 1 J 1 R

Example (2)
Pivot
4

2|1]|7]s8[3]5]6
foti ti
2|1]/3]|8]|7]5]6
fL t ti
2|1]3]|8]|7]|5]e6
L t ti
2|1]|3]|8]7]5]6
L

Data Structures, . Spring 2006 © L. Joskowicz

1 and 8 swapped

3 and 7 swapped

—_ | = | = | =

R
|
R
|
R
|
R

Example (3)
2|1|3|4|7]5]6]8] 2nd iteration
tL tr
Left list Pivot Right list
Pivot
2 ‘ 1‘ 3|4 H 7|5 H 6|8 ‘ general pattern
L t ti 'tr
Left list Right list Unrestricted
Ali] <Pivot AJi] > Pivot list

Data Structures, . Spring 2006 © L. Joskowicz

2.

3.

Quick-Sort complexity

The complexity of Quick-Sort depends on whethe
the partitioning is balanced or unbalanced, which
depends on which elements are used for partition|ng
Unbalanced patrtitiorthere is no partition, so the
sub-problems are of sizte-1 and O.

Perfect partitionthe partition is always in the
middle, so the sub-problems are both of siné.

Balanced patrtitiarthe partition is somewhere in the
middle, so the sub-problems are of gizek andk.

Let us study each case separately!

Data Structures, . Spring 2006 © L. Joskowi

9

Unbalanced partition
The recurrence equation is:

T(n) =T(n—1) +T(0) +O(n)

T(n)=T(n-1)+©(n) A

00

Data Structures, . Spring 2006 © L. Joskowicz

The recurrence equation is:

T(n) < T(n/2) +T("/2) +©(n)

Perfect partition

I
LTI 11 [T

BRER

T(n)=2T(n/2)+0(n)

T(n)=0(nlgn)

Data Structures, . Spring 2006 © L. Joskowicz

General case
The recurrence equation is:

T(n)=T(@+T(n-q-1)+6(n)
T(n)=max{T(a)+T(n-q-1}+0(n)

Average case is somewhere between unbalanced
and perfect partition:

O(nlgn)<T(n)< ©(n?)

which one dominates?

Data Structures, . Spring 2006 © L. Joskowicz

Example: 9-to-1 proportional split

 Suppose that the partitioning algorithm always
produces a 9-to-1 proportional split.

* The complexity is:

T(n) = T(n/10) +T(9n/10) +O(n)

At every level, the boundary condition is reached
depth log,n with cost®(n). The recursion
terminates at depth Iggyn

» Therefore, the complexity ig(n) = O(nlg n)

« In fact, this is true foanyproportional split!

Data Structures, . Spring 2006 © L. Joskowicz 13

Worst-case analysis: proof (1)
T(n) = max{T () + T(n - a)}+ ©(n)

Claim: T(n)<cn® = O(nz)

Proof

Base of inductiorTrue forn=1.

Induction stepAssume fom < n’, and prove fomn'.

T(n)=max{T (@) +T(n-a)}+ o(n)
cof +c(n'—q)? +dn’
2cq +c(n')? - 2cqri+dn'

IN

Data Structures, . Spring 2006 © L. Joskowicz 14

Worst-case analysis: proof (2)

To prove the claim, we need to show that this is
smaller thanc(n)? , or equivalently that:

dn'< 2cq(n'-q)

Sinceq(n’-q) is always greater tham2, as can be
easily verified by checking the two cases:
d<3 or n=qg=%

we can piclkc such that the inequality holds.

Data Structures, . Spring 2006 © L. Joskowicz 15

Average case complexity

* We must first define what is an average case

» The behavior is determined by tredative
orderingof the elements, not by the elements
themselves.

» Thus, we are interested in the average of all
permutations, where each permutation is equally
likely to appear _(uniformly random input).

» The average complexity is the number of steps
averageaver a uniformly random input.

» The complexity is determined by the number of
“bad splits” and the number of “good splits”.

Data Structures, . Spring 2006 © L. Joskowicz 16

Bad splits and good splits -- intuition

0 L (nD2 [(n)2]
\(n -1)/2 —q \ (n-1)2 \

Alternate bad split Good split

In both cases, the complexity@$n). Thus
the bad split was “absorbed” by a good one!

Data Structures, . Spring 2006 © L. Joskowicz 17

Randomization and average complexi

« One way of studying the average case analyse is 1
analyze the performance ofandomized versioof
the algorithm.

* In the randomized version, choices are made with
uniform probability, and this mimicks input
generality — essentially, we reduce the chances of
hitting the worst input!

« Randomization ensures that the performance is gq
without making assumptions on the input

« Randomness is one of the most important concept
and tools in modern Computer Science!

Data Structures, . Spring 2006 © L. Joskowi 18

Ly

od

oY

Randomized Quick-Sort

Randomized Complexityrhe number of steps, (for
the WORST input !) averaged over the random
choices of the algorithm.

For Quick-Sortthe pivot determines the number of
good and bad splits

We chose the leftmost element to select a pivot.
What if we choose insteathy elementandomly?

In Partition use Pivot < A[Random(eft,Right]
instead of Pivot < A[Leff]
Note that the algorithm remains correct!

Data Structures, Spring 2006 © L. Joskowicz 19

Randomized complexity
« Randomized-case recurrence:

The pivot is equally likely to be in any place, and sinceethg
aren places, each case occurs in @f the inputs.

We get:

n-1

T(0)=2{ S r+Tlo-a) -0t

q=1
e This is “Recurrence with Full History”, since it deperts
all previous sizes of the problem.

It can be proven, using methods which we will not get intg
this time, that the solution for this recurrence satisfies:

Data Structures, Spring 2006 © L. Joskowicz 20

Sorting with comparisons

The basic operation of all the sorting algorithaes
have seen so far is the comparison between two
elements: a<3g

The sorted order they determine is based only
comparisons between the input elements!

We would like to prove that argomparison sorting
algorithm must mak&(n Ig n) comparisons in the
worst caseo sortn elements (lower bound).

Sorting without comparisons takégn) in the worst

case, but we must make assumptions about the input.

Data Structures, Spring 2006 © L. Joskowicz 21

Comparison sorting — lower bound

« We want to prove a lower bouii@) on the worst-case
complexity sorting foANY sorting algorithm that uses
comparisons

* We will use thedecision tree modéb evaluate the
number of comparisons that are needed in the worst cas

« Every algorithmA has its own decision treE depending
on how it does the comparisons between elements.

* The length of the longest path from the root to the leaves
in this treeT will determine the maximum number of
comparisons that the algorithm must perform.

Data Structures, Spring 2006 © L. Joskowicz 2

1

Decision trees

A decision tree is a full binary tree that reprase
the comparisons between elements that are
performed by a particular algorithm.

The tree hamternal nodesleaves, and branches
— Internal nodetwo indices:j for 1<i,j<n
—Leaf a permutation of the inpa(1), ... z(n)
— Branchesresult of a comparison

a,< g (left) ora > g (right)

Data Structures, Spring 2006 © L. Joskowicz 23

Decision tree for 3 elements

Data Structures, Spring 2006 © L. Joskowicz 2

Paths in decision trees

The execution of sorting algorithAon input |
corresponds to tracing a path Thfrom the root to a
leaf

» Each internal node is associated witegno
question, regarding the input, and the two edgasts th
are coming out of it are associated with one of the
two possible answers to the question.

» The leaves are associated with one possible ogcgm
of the tree, and no edge is coming out of them.

At the leaf, the permutatianis the one that sorts
the elements!

Data Structures, . Spring 2006 © L. Joskowicz 25

Decision tree for 3 elements

Longest path: 3 |

(7,9,6) €

(A)=(6,7,9)

Data Structures, . Spring 2006 © L. Joskowicz 26

Decision tree computation

« The computation for an input starts at the root,
and progresses down the tree from one node to
the next according to the answers to the question
at the nodes.

» The computation ends when we get to a leaf.

« ANY correct algorithm MUST be able to produce
each permutation of the input.

» There are at most permutations and they must
all appear in the leafs of the tree.

(%)

Data Structures, . Spring 2006 © L. Joskowicz 27

Worst case complexity

The worst-case number of comparisons is the lengt
of the longest root-to-leaf path in the decisiaetr
The lower bound on the length of the longest fath
a given algorithm gives a lower bound on the worst

case number of comparisons the algorithm requires.

Thus, finding a lower bound on the length of the
longest path for a decision tree based on comparis
provided a lower bound on the worst case complex
of comparison based sorting algorithms!

Data Structures, . Spring 2006 © L. Joskowicz 28

Comparison-based sorting algorithm

« Any comparison-based sorting algorithm can be
described by a decision trée

« The number of leaves in the tree of any comparisgn
based sorting algorithm must be at ledstince
the algorithm must give a correct answer to every
possible input, and there arepossible answers.

* Why “at least”? Because there might be more tham
one leaf with the same answer, corresponding to
different ways the algorithm treats different irgut

U

Data Structures, . Spring 2006 © L. Joskowicz 29

Length of the longest path (1)

« n! different possible answers.
« Consider all trees with! leaves.

¢ In each one, consider the longest path.dle¢ the depth
(height) of the tree.

¢ The minimum length of such longest path must be such
thatn! < 2d

» Therefore, logrf!) <log (&) =d
 Quick check: (n/2)W2 <nl <nn
(n/2) log (V2) <log (') <nlogn
log (') = ®(nlog n)

Data Structures, . Spring 2006 © L. Joskowicz 30

=2

ty

Length of the longest path (2)

Claim: forn>2

Proof: log(n!) = |09(|_|i"=1i) = Z?:llog(i)
2>, log(3) = $log(3)
=Q(nlog(n)).

On the other hand:

log(n) =3"" log(i) < nlog(n).
This is the lower bound on the number of compasson
in any comparison-based sorting algorithm.

Data Structures, . Spring 2006 © L. Joskowicz 31

Complexity of comparison-sorting

algorithms
Space | Worst |Bestcase Average | Random|
case case case

Bubble-Sort O(n) o(M) O(n) o(n?) O(n?)

Insertion-Sort o(n) o(n?) Qo(n) o(n?) o(n?)

Merge-Sort O(nlgn) | O(nlgn) | O(nlgn) | O(nlgn)

Quick-Sort O(n) O(m?) | O(nign) | O(nlign) | O(nlg n)

L ower boundsfor comparison sortingis T(n) = (n Ign)

and S(n) = Q(n) for worst and aver age case, deter ministic
and randomized algorithms.

Data Structures, . Spring 2006 © L. Joskor 32

