Data Structures – LECTURE 3

Recurrence equations

- Formulating recurrence equations
- Solving recurrence equations

Spring 2006 © L. Josk

- The master theorem (simple and extended versions)
- Examples: Merge-Sort and Quick-Sort

Complexity analysis of an algorithm

Two main methods:

- <u>Direct counting</u>: sum of the individual steps <u>times</u> the number of times executed $T(n) = \sum c_i t_i$ Best for repeated iterations (loops).
- <u>Recurrence equation</u>: an equality or inequality describing the function in terms of its behavior on smaller inputs: *T*(*n*) = *T*(*n* −1) + *c*; *T*(1) = 1.
 → the solution of the equation is *T*(*n*) = *O*(*n*²).

Best for recursive functions and structures.

Recurrence equations

• <u>Simplifying assumptions</u>

- -n is sufficiently large.
- $-T(1) = \Theta(1)$ for sufficiently small *n*. A value changes the solution of the equation, but usually only by a constant factor, so the order of growth is unchanged!
- Choose *n* according to boundary conditions: *n* is even (n=2k), a power of two $(n=2^k)$ where k > 0 is an integer.

Formulation:

, Spring 2006 © L. Joskowi

Be very careful with the constants!

T(n) is not the same as T(n/2)!

Formulating recurrence equations

- Consider
 - in how many sub-problems the problem is split
 - what is the size of each sub-problem
 - how much work is required to combine the results of each sub-problem
- Recursion tree

Solving recurrence equations

Three ways to solve recurrence equations:

Spring 2006 © L. Joskowie

- <u>Substitution</u>: guess a bound and use mathematical induction to prove the guess correct.
- <u>Recursion-tree</u>: convert the recurrence into a tree whose nodes represent the costs at each level and use bounding summations to solve the recurrence.
- <u>Master method</u>: apply a theorem for recurrences of the form $T(n) = aT(n/b) + n^c$ where *a*, *b*, *c* are constants.

Finding patterns in recurrences (1)

Write several elements of the recursion, and see if you can find a pattern. Once you find the pattern, prove it is true by substitution (induction)

$$\begin{split} T(n) &= T(n-1) + n \\ T(n-1) &= T(n-2) + (n-1) \\ T(n-2) &= T(n-3) + (n-2) \\ T(n-3) &= T(n-4) + (n-3) \\ \text{Now substitute:} \\ T(n) &= T(n-1) + n \\ &= [T(n-2) + (n-1)] + n \\ &= [[T(n-3) + (n-2)] + (n-1)] + n \\ &= [[[T(n-4) + (n-3)] + (n-2)] + (n-1)] + n \\ &= T(n-k) + \sum_{i=1}^{k} (n-i+1) = T(n-k) + nk - ((k-1)k)/2 \end{split}$$

Finding patterns in recurrences (2)

T(n) = T(n - k) + nk - ((k - 1)k)/2At the end of the recursion, k = n - 1 and T(1) = 1, so we get: $T(n) = 1 + n^2 - n + n^2/2 - 3n/2 - 1$ $= n^2/2 - n/2$ $= O(n^2)$

So the guess is that $O(n^2)$ is the solution to the recurrence T(n) = T(n-1) + n

Recurrence equations to remember

• $T(n) = T(n-1) + O(1)$	\rightarrow	O(n)
• $T(n) = T(n-1) + O(n)$	\rightarrow	$O(n^2)$
• $T(n) = 2T(n-1) + O(1)$	\rightarrow	$O(2^n)$

- T(n) = T(n/2) + O(1) \rightarrow $O(\lg n)$
- T(n) = 2T(n/2) + O(1) \rightarrow O(n)
- T(n) = 2T(n/2) + O(n) \rightarrow $O(n \lg n)$

tures, Spring 2006 © L. Joskowicz

27