
�

Data Structures, Spring 2006 © L. Joskowicz
�

Data Structures – LECTURE 3

Recurrence equations

• Formulating recurrence equations

• Solving recurrence equations

• The master theorem (simple and extended versions)

• Examples: Merge-Sort and Quick-Sort

Data Structures, Spring 2006 © L. Joskowicz
�

Complexity analysis of an algorithm

Two main methods:
• Direct counting: sum of the individual steps times

the number of times executed T(n) = � citi
Best for repeated iterations (loops).

• Recurrence equation: an equality or inequality
describing the function in terms of its behavior on
smaller inputs: T(n) = T(n –1) + c; T(1) = 1.
� the solution of the equation is T(n) = O(n2).
Best for recursive functions and structures.

Data Structures, Spring 2006 © L. Joskowicz
�

Recurrence equations
• Simplifying assumptions

– n is sufficiently large.

– T(1) = �(1) for sufficiently small n. A value changes
the solution of the equation, but usually only by a
constant factor, so the order of growth is unchanged!

– Choose n according to boundary conditions: n is even
(n=2k), a power of two (n=2k) where k >0 is an integer.

• Formulation:

Be very careful with the constants!

T(n) is not the same as T(n/2)!

Data Structures, Spring 2006 © L. Joskowicz
�

Formulating recurrence equations
• Consider

– in how many sub-problems the problem is split

– what is the size of each sub-problem

– how much work is required to combine the results of
each sub-problem

• Recursion tree n

n/2

n/4 n/4 n/4n/4

n/2

Data Structures, Spring 2006 © L. Joskowicz
�

Common recurrence equations (1)
• Factorial:multiply n by (n –1)!

T(n) = T(n – 1) + O(1) � O(n)
• Fibonacci:add fibonacci(n – 1) and fibonacci(n – 2)

T(n) = T(n – 1) + T(n – 2) � O(2n)
• Sequential search: see if the first element is the one

we are looking for, and if not, recursively call with one
element less:

T(n) = T(n – 1) + O(1) � O(n)
• Insertion sort:find the place of the first element in the

sorted list, and recursively call with one element less:
T(n) = T(n – 1) + O(n) � O(n2)

Data Structures, Spring 2006 © L. Joskowicz
�

Common recurrence equations (2)
• Binary search:see if the root of the tree is the one we are

looking for, and if not, recursively call with either the
left or right subtree, which has half the elements

T(n) = T(n/2) + O(1) � O(lg n)

• Binary tree traversal: visit all the nodes of a tree by
recursively visiting the nodes of the left and right tree:

T(n) = 2T(n/2) + O(1) � O(n)

• Merge Sort:split the list into two equal-sized parts,
recursively sort each, and merge the resulting lists:

T(n) = 2T(n/2) + O(n) � O(n lg n)

�

Data Structures, Spring 2006 © L. Joskowicz
	

Solving recurrence equations
Three ways to solve recurrence equations:

• Substitution: guess a bound and use mathematical
induction to prove the guess correct.

• Recursion-tree: convert the recurrence into a tree
whose nodes represent the costs at each level and
use bounding summations to solve the recurrence.

• Master method: apply a theorem for recurrences
of the form T(n) = aT(n/b) + nc

where a, b, care constants.

Data Structures, Spring 2006 © L. Joskowicz

The substitution method
The solution to the equation T(n) = 2T(n/2) + n is O(n lg n)

for n � 2; assume T(1) = 1
Prove: T(n) � c(n lg n) for c � 2

Base case: T(2) � c 2lg2, which holds for c � 2 since T(2) = 3
General case:
Assume that it holds for n/2, that is: T(n/2) � 2(cn/2 lg (n/2))
Substitute into the recurrence relation and prove for n:
T(n) � 2(cn/2 lg (n/2) + n

� cn lg (n/2) + n
� cn lg n – cn lg 2 + n
� cn lg n – cn + n
� cn lg n for c � 1

Data Structures, Spring 2006 © L. Joskowicz

Finding patterns in recurrences (1)
Write several elements of the recursion, and see if you can
find a pattern. Once you find the pattern, prove it is true
by substitution (induction)
T(n) = T(n – 1) + n
T(n –1) = T(n – 2) + (n –1)
T(n –2) = T(n – 3) + (n –2)
T(n –3) = T(n – 4) + (n –3)
Now substitute:
T(n) = T(n – 1) + n

= [T(n – 2) + (n –1)] + n
= [[T(n – 3) + (n –2)] +(n –1)] + n
= [[[T(n – 4) + (n –3)] + (n –2)] +(n –1)] + n

= T(n – k) + �k
i=1(n –i+1) = T(n – k) + nk –((k – 1)k)/2

Data Structures, Spring 2006 © L. Joskowicz
��

Finding patterns in recurrences (2)

T(n) = T(n – k) + nk –((k – 1)k)/2
At the end of the recursion, k = n –1 and T(1) = 1, so we get:
T(n) = 1 + n2 – n + n2/2 – 3n/2 – 1

= n2/2 – n/2
= O(n2)

So the guess is that O(n2) is the solution to the recurrence
T(n) = T(n – 1) + n

Data Structures, Spring 2006 © L. Joskowicz
��

The master theorem (simple version)

Then

1. T(n) = �(nc) when a/bc < 1 (logba < c)

2. T(n) = �(nc logb n) when a/bc = 1 (logba = c)

3. T(n) = when a/bc > 1 (logba > c)

Let T(n) be defined on non-negative integers by the
recurrence:

T(n) = aT(n/b) + nc

where are constants0,1,1 ≥>≥ cba

)(log abnΘ

Data Structures, Spring 2006 © L. Joskowicz
��

Useful math to know…
Logarithms

• logc(ab) = logca + logcb

• logban = nlogba

• logban = nlogba

• logb(1/a) = – logba

• logba = 1 / logab

•

•

Geometric series:

abba log=
ac bb ca loglog =

1

11

0 −
−=

+

=
�

c

c
c

kk

i

i

See Appendix A in book
for many useful tricks!

�

Data Structures, Spring 2006 © L. Joskowicz
��

Recurrence equation of master theorem
T(n) = aT(n/b) + nc

T(n/b) = aT(n/b2) + (n/b)c

T(n/b2) = aT(n/b3) + (n/b2)c

T(n/b4) = aT(n/b5) + (n/b4)c

Now substitute:
T(n) = aT(n/b) + nc

= a[aT(n/b2) + (n/b)c] + nc

= a[a[aT(n/b3) + (n/b2)c]+ (n/b)c] + nc

= akT(n/bk) + nc[1 + a(1/b)c + a2(1/b2)c +…ak–1 (1/bk–1)c]

k= logbn, is the depth
of the recursion

�
−

=
�
�

�
�
�

�+=
1

0

)(
k

i

c

i
ikk

b

n
abnTa

Data Structures, Spring 2006 © L. Joskowicz
��

Recursion-tree for the equation
n

...

a2

ak

c

b

n
a �

�

�
�
�

�

c

b

n
a �

�

�
�
�

�
2

2

a

...

i=0

i=k

k= logbn, the depth of the recursion

)1(
log

Θ=
nbb

n

a a
c

b

n
�
�

�
�
�

�
2

...... ...i=2 c

b

n
�
�

�
�
�

�
2

c

b

n
�
�

�
�
�

�
2

c

b

n
�
�

�
�
�

�
2

...
c

kb

n
�
�

�
�
�

� ...
c

kb

n
�
�

�
�
�

�
c

kb

n
�
�

�
�
�

� c

kb

n
�
�

�
�
�

� c

kb

n
�
�

�
�
�

�

c

b

n
�
�

�
�
�

� ...i=1

a
c

b

n
�
�

�
�
�

�
c

b

n
�
�

�
�
�

�
c

b

n
�
�

�
�
�

�

c

i

n

i

ia

b

n
an

b

b �
�

�
�
�

�+Θ �
−

=

1log

0

log)(

Data Structures, Spring 2006 © L. Joskowicz
��

Master theorem proof

The number of comparisons is:

which depends on the value of

i

c

n

i

ca

c

i

n

i

ia

b

a
nn

b

n
an

b

b

b

b

�
�

�
�
�

�+Θ

=�
�

�
�
�

�+Θ

�

�
−

=

−

=

1log

0

log

1log

0

log

)(

)(

cb

a

Data Structures, Spring 2006 © L. Joskowicz
��

Case 1:

Master theorem: Case 1

1<
cb

a

.
1

1

1

1
1

log

1log

0

0

const

b

a

b

a
b

a

b

a

b

a

cc

n

ci

c

n

i
c

b

b

<
�
�

�
�
�

�−
<

�
�

�
�
�

�−

�
�

�
�
�

�−
=�

�

�
�
�

�<�
�

�
�
�

�= �
−

=

i

c

n

i

c

b

a
n

b

�
�

�
�
�

�
�

−

=

1log

0

Therefore, T(n) = �(nc)

Data Structures, Spring 2006 © L. Joskowicz
�	

Case 2:

Master theorem: Case 2

1=
cb

a

n
b

a
b

i

c

n

i

b

log
1log

0

=�
�

�
�
�

�
�

−

=

i

c

n

i

c

b

a
n

b

�
�

�
�
�

�
�

−

=

1log

0

Therefore, T(n) = �(nc logb n)

Data Structures, Spring 2006 © L. Joskowicz
�

Case 3:

Master theorem: Case 3

1>
cb

a

�
�

�

�

�
�

�

�
�
�

�
�
�

�Θ=�
�

�
�
�

�
�

−

=

n

c

i

c

n

i

bb

b

a

b

a
log1log

0

i

c

n

i

c

b

a
n

b

�
�

�
�
�

�
�

−

=

1log

0

aa
c

c
n

nc

cn

c
c bbb

b

b

nn
n

n
a

b

n

b

a
n logloglog

log

log

.. ===�
�

�
�
�

�

�
�

�

�

�
�

�

�
�
�

�
�
�

�Θ=
�
�

�

�

�
�

�

�
�
�

�
�
�

�Θ
n

c
c

n

c
c

bb

b

a
n

b

a
n

loglog

Therefore,)()(log abnnT Θ=

�

Data Structures, Spring 2006 © L. Joskowicz
�

Example 1: Merge-Sort
The recurrence equation is:

T(n) = 2T(n/2) + n

Here, a = 2, b = 2, c = 1
Case 2 applies: a/bc = 2/21 = 1

Conclusion:

)log()(2
1 nnnT Θ=

)lg()(nnnT Θ=

Data Structures, Spring 2006 © L. Joskowicz
��

Solve the recurrence

Here a = 9, b = 3, c = 1

Case 3 applies: a/bc = 9/31 = 3 > 1

Conclusion:

Example 2

nnTnT +=)3/(9)(

()2)(nnT Θ=

29loglog 3 nnn ab ==

Data Structures, Spring 2006 © L. Joskowicz
��

Let be constants, let f (n) be a function,
and let T(n) be defined on non-negative integers by
the recurrence:

where n/b is either or

1. If then

2. If then

3. If and if
for some c < 1 and sufficiently large n, then

The master theorem (general version)

)()/()(nfbnaTnT +=

1,1 >≥ ba

() 0)(log >= − εεabnOnf ()abnnT log)(Θ=
()abnnf log)(Θ= ()nnnT ab lg)(logΘ=

() 0)(log >Ω= + εεabnnf)()/(nfcbnfa ≤

())()(nfnT Θ=

� 	bn /
 �bn /

Data Structures, Spring 2006 © L. Joskowicz
��

Recursion-tree for the equation
ni=0

k= logbn, the depth of the recursion

...
i=k)1(Θ ...)1(Θ)1(Θ)1(Θ)1(Θ

�
�

�
�
�

�

b

n
f �

�

�
�
�

�

b

n
f�

�

�
�
�

�

b

n
f ...i=1

a

�
�

�
�
�

�
2b

n
f �

�

�
�
�

�
2b

n
f �

�

�
�
�

�
2b

n
f�

�

�
�
�

�
2b

n
fi=2
a a

a2

ak

�
�

�
�
�

�

b

n
af

�
�

�
�
�

�

b

n
fa2

a

...

�
�

�
�
�

�+Θ �
−

=
i

n

i

ia

b

n
fan

b

b

1log

0

log)(

Data Structures, Spring 2006 © L. Joskowicz
��

The master theorem – intuition

Compares two terms: and f (n)

1. When dominates, the complexity is

2. When f (n) dominates, the complexity is

3. When they are comparable, there is a lgn penalty

()abnO log

()abnO log

()abnnT log)(Θ=

())()(nfnT Θ=

() ()nnfnnnT ab lg)(lg)(log Θ=Θ=
see book for formal proof!

Data Structures, Spring 2006 © L. Joskowicz
��

Example 1
Solve the recurrence

Here a = 1, b = 3/2, f (n) = 1 and

Case 2 applies:

Conclusion:

1)3/2()(+= nTnT

101loglog 2/3 === nnn ab

()1)(Θ=nf

() ()nnnnT lglg)(0 Θ=Θ=

�

Data Structures, Spring 2006 © L. Joskowicz
�	

Recurrence equations to remember

• T(n) = T(n – 1) + O(1) � O(n)

• T(n) = T(n – 1) + O(n) � O(n2)

• T(n) = 2T(n – 1) + O(1) � O(2n)

• T(n) = T(n/2) + O(1) � O(lg n)

• T(n) = 2T(n/2) + O(1) � O(n)

• T(n) = 2T(n/2) + O(n) � O(n lg n)

