Data Structures – LECTURE 2

Elements of complexity analysis

- · Performance and efficiency
- Motivation: analysis of Insertion-Sort
- · Asymptotic behavior and growth rates
- Time and space complexity
- Big-Oh functions: O(f(n)), $\Omega(f(n))$, $\Theta(f(n))$
- Properties of Big-Oh functions

Data Structures, Spring 2006 © L. Joskowic

Performance and efficiency

- We can quantify the <u>performance of a program</u> by measuring its run-time and memory usage.
 It depends on how fast is the computer, how good the compiler
 - → a very local and partial measure!
- We can quantify the <u>efficiency of an algorithm</u> by calculating its space and time requirements as a function of the basic units (memory cells and operations) it requires
- → implementation and technology independent!

Example of a program analysis

Sort the array A of n integers

2011 111 111 11 1 1 1 1 1 1 1 1 1 1 1 1					
<u>Insertion-Sort(<i>A</i>)</u>	cost	times			
1. for $j \leftarrow 2$ to A.length	c1	n			
2. do $key \leftarrow A[j]$	c2	n-1			
3. // Insert $A[j]$ into $A[1j-1]$					
4. $i \leftarrow j-1$	c4	n-1			
5. while $i > 0$ and $A[i] > key$	c5	$\sum_{j=2}^{n} t_j$			
6. do $A[i+1] \leftarrow A[i]$	<i>c</i> 6	$\sum_{j=2}^{n} (t_j - 1)$			
7. $i \leftarrow i - 1$	<i>c</i> 7	$\sum_{j=2}^{n} (t_j - 1)$ $n - I$			
8. $A[i+1] \leftarrow key$	c8	n-1			

Insertion-Sort example

5 2 4 6 1 3

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

1 2 3 4 5 6

Program analysis method

- The running time is the sum of the running times of each statement executed
- Each statement takes c_i steps to execute and is executed t_i times → total running time is

$$T(n) = \sum_{i=1}^{k} c_i t_i$$

Data Structures, Spring 2006 © L. Joskowicz

Insertion-Sort analysis (1)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_5 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

• <u>Best case</u>: the array is in sorted order, so $t_j=1$ for j=2..n; step 5 takes $\sum_{j=2}^{n} t_j = n$ and steps 6 and 7 are not executed. Thus

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

T(n) = an + b This is a linear function!

Outa Structures, Spring 2006 © L. Joskowicz

Insertion-Sort Analysis (2)

• Worst case: the array is in reversed sorted order, so t=j for j=2..n, so step 5 takes

$$\sum_{j=2}^{n} j = n(n+1)/2 - 1$$

and steps 6 and 7 are always executed, so they $\sum_{j=2}^{n} (j-1) = n(n+1)/2$ take

Overall

Overall
$$T(n) = (c_5 + c_6 + c_7) \frac{n^2}{2} + (c_1 + c_2 + c_4 + c_8 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2})n - (c_2 + c_4 + c_5 + c_8)$$

 $T(n) = an^2 + bn + c$ This is a quadratic function!

Asymptotic analysis

• We can write the running time of a program T(n) as a function of the input size *n*:

$$T(n) = f(n)$$

- · The function contains constants that are program and platform-dependent.
- We are interested in the asymptotic behavior of the program: how quickly does the running time grow as a function of the input size?
- \rightarrow <u>Rationale</u>: if the input size *n* is small, all programs are likely to do OK. But they will have trouble when n grows. In fact, the program performance will be dominated by it!

Asymptotic analysis: best vs. worst case for Insertion-Sort $T_2(n) = cn^2 + dn + e$ time $T_i(n) = an + b$ overhead No matter what the constants are $T_2(n) > T_1(n)$ after a while

To summarize

- The efficiency of an algorithm is best characterized by its asymptotic behavior as a function of the input or problem size n.
- We are interested in both the run-time and space requirements, as well as the best-case, worst-case, and average behavior of a program.
- · We can compare algorithms based on their asymptotic behavior and select the one that is best suited for the task at hand.

Time and space complexity

• Time complexity: T(n)

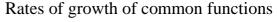
How many operations are necessary to perform the computation as a function of the input size n.

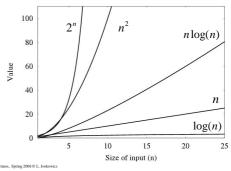
• Space complexity: *S*(*n*)

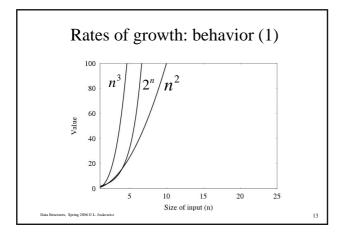
How much memory is necessary to perform the computation as a function of the input size n.

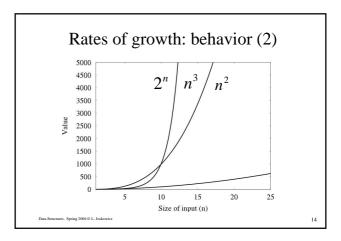
• Rate of growth:

We are interested in how fast the functions T(n) and S(n) grow as a function of the input size n.









Problem size as a function of time

Algorithm	Time	Maximum problem size		
	Complexity	1 sec	1 min	1 hour
A_I	n	1000	6 x10 ⁴	3.6 x 10 ⁶
A_2	$n \log_2 n$	140	4893	2.0 x 10 ⁵
A_3	n^2	31	244	1897
A_4	n^3	10	39	153
A_5	2^n	9	15	21

Assuming one unit of time equals one millisecond.

Data Structures, Spring 2006 © L. Joskowi

Effect of a tenfold speedup

Algorithm	Time	Maximum problem size		
	Complexity	before speed-up	after speed-up	
A_I	n	s_I	10s ₁	
A_2	$n \log_2 n$	s_2	approx. 10s ₂	
			(for large s_2)	
A_3	n^2	s_3	3.16s ₃	
A_4	n^3	S_4	2.15s ₄	
A_5	2 ⁿ	s_5	$s_5 + 3.3$	

Data Structures, Spring 2006 © L. Joskowicz

Asymptotic functions

Define mathematical functions that estimate the complexity of algorithm A with a growth rate that is independent of the computer hardware and compiler. The functions ignore the constants and hold for sufficiently large input sizes n.

- **Upper bound** O(f(n)): <u>at most</u> f(n) operations
- Lower bound $\Omega(f(n))$: at least f(n) operations
- **Tight bound** $\Theta(f(n))$: <u>order of</u> f(n) operations

Data Structures, Spring 2006 © L. Joskowicz

Asymptotic upper bound – Big-Oh

Let f(n) and g(n) be two functions from naturals to positive reals

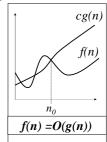
$$f(n) = \mathcal{O}(g(n))$$

if there exist c > 0 and $n_0 > 1$ such that

 $f(n) \le c \times g(n)$

for all $n \ge n_0$

Data Structures, Spring 2006 © L. Joskowicz



Asymptotic lower bound – Big-Omega

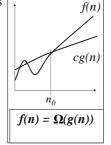
Let f(n) and g(n) be two functions from naturals to positive reals

$$f(n) = \Omega(g(n))$$

if there exist c > 0 and $n_0 > 1$ such that

$$f(n) \ge c \times g(n))$$

for all $n \ge n_0$



Data Structures, Spring 2006 © L. Joskowi

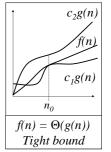
Asymptotic tight bound – Big-Theta

Let f(n) and g(n) be two functions from naturals to positive reals

$$f(n) = \Theta(g(n))$$

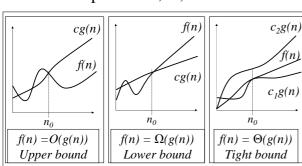
if there exist $c_1, c_2 > 0$ and $n_0 > 1$ such that

$$0 \le c_1 \times g(n) \le f(n) \le c_2 \times g(n)$$
 for all $n \ge n_0$



Structures, Spring 2006 © L. Joskowicz

Graphs for O, Ω , and Θ



Properties of the O, Ω , and Θ functions

<u>Theorem</u>: f is tight iff it is an upper <u>and</u> a lower bound: $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

• Reflexivity:

$$f(n) = O(f(n)); f(n) = \Omega(f(n)); f(n) = \Theta(f(n))$$

• Symmetry:

$$f(n) = \Theta(g(n))$$
 iff $g(n) = \Theta(f(n))$

• Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ then $f(n) = \Omega(h(n))$

 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$

Data Structures Series 2006 D. Lockowicz

22

Properties of the O, Ω , and Θ functions

For O, Ω , and Θ :

- O(O(f(n)) = O(f(n))
- O(f(n) + g(n)) = O(f(n)) + O(g(n))
- O(f(n).g(n)) = O(f(n)).O(g(n))
- $O(\log n) = O(\lg n)$

lg is log,

• Polynomials: $O(\sum_{i=1}^k a_i n^i) = O(n^k)$

• Factorials:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \qquad O(n!) = O(n^{n+0.5})$$
$$O(\log n!) = O(n \lg n)$$

Onta Structures, Spring 2006 © L. Joskowic

Asymptotic functions

- Asymptotic functions are used in conjunction with recurrence equations to derive complexity bounds
- Proving a lower bound for an algorithm is usually harder than proving an upper bound for it. Proving a tight bound is hardest!
- Note: still does not answer the if this is the <u>least</u> or the <u>most</u> work for the given problem. For this, we need to consider upper and lower problem bounds (later in the course).

Data Structures, Spring 2006 © L. Joskowicz

24