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Data Structures – LECTURE 2 

Elements of complexity analysis

• Performance and efficiency
• Motivation: analysis of Insertion-Sort
• Asymptotic behavior and growth rates
• Time and space complexity
• Big-Oh functions: O(f(n)), �(f(n)), �(f(n))
• Properties of Big-Oh functions
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Performance and efficiency
• We can quantify the performance of a programby 

measuring its run-time and memory usage.

It depends on how fast is the computer, how good the 
compiler  

� a very local and partial measure!

• We can quantify the efficiency of an algorithmby 
calculating its space and time requirements as a 
function of the basic units (memory cells and 
operations) it requires 

� implementation and technology independent!
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Example of a program analysis

Insertion-Sort(A)
1. for j � 2  to A.length
2. do key�A[j]
3. // Insert A[j] into A[1..j-1]
4. i � j – 1
5. while i > 0  and A[i] > key
6. do A[i+1] � A[i]
7. i � i – 1
8. A[i+1] � key
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Sort the array A of n integers
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5      2      4      6      1      3

Insertion-Sort example

1      2      3      4      5      6

2      5      4      6      1      3

2      4      5      6      1      3

2      4      5      6      1      3

1      2      4      5      6      3
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Program analysis method

• The running time is the sum of the running times 
of each statement executed

• Each statement takes ci steps to execute and is 
executed ti times � total running time is

i

k

i itcnT � =
=

1
)(

Data Structures, Spring 2006 © L. Joskowicz �

Insertion-Sort analysis (1)

• Best case: the array is in sorted order, so tj=1 for 
j=2..n; step 5 takes                  and  steps 6 and 7 
are not executed. Thus 
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• Worst case: the array is in reversed sorted order, 
so tj=j for j=2..n, so step 5 takes                  

and  steps 6 and 7 are always executed, so they 
take 

Overall

Insertion-Sort Analysis (2)
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Asymptotic analysis
• We can write the running time of a program T(n) as a 

function of the input size n:

T(n) = f (n)

• The function contains constants that are program and 
platform-dependent. 

• We are interested in the asymptotic behavior of the 
program: how quickly does the running time grow as a 
function of the input size?

� Rationale: if the input size n is small, all programs are 
likely to do OK. But they will have trouble when n grows. 
In fact, the program performance will be dominated by it!
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Asymptotic analysis: best vs. worst 
case for Insertion-Sort

T1(n) = an+b

T2(n) = cn2+dn+e
time

n

overhead

No matter what the constants areT2(n) > T1(n) after a while

n0
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To summarize

• The efficiency of an algorithm is best characterized 
by its asymptotic behavior as a function of the input 
or problem size n.

• We are interested in both the run-time and space 
requirements, as well as the best-case, worst-case, 
and average behavior of a program. 

• We can compare algorithms based on their 
asymptotic behavior and select the one that is best 
suited for the task at hand.
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Time and space complexity

• Time complexity: T(n)
How many operations are necessary to perform the 
computation as a function of the input size n.

• Space complexity: S(n)
How much memory is necessary to perform the 
computation as a function of the input size n.

• Rate of growth:
We are interested in how fast the functions T(n) and 
S(n) grow as a function of the input size n.
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Rates of growth of common functions
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Rates of growth: behavior (1)

2nn2
3n
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Rates of growth: behavior (2)

2nn2 3n
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Algorithm Time Maximum problem size

Complexity 1 sec 1 min 1 hour

A1 n 1000 6 x104 3.6 x 106

A2 n log2 n 140 4893 2.0 x 105

A3 n2 31 244 1897

A4 n3 10 39 153

A5 2n 9 15 21

Assuming one unit of time equals one millisecond.

Problem size as a function of time
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Algorithm Time Maximum problem size

Complexity before speed-up after speed-up

A1 n s1 10s1
A2 n log2 n s2 approx. 10s2

(for large s2)

A3 n2 s3 3.16s3
A4 n3 s4 2.15s4
A5 2n s5 s5 + 3.3

Effect of a tenfold speedup
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Asymptotic functions
Define mathematical functions that estimate the 
complexity of algorithm A with a growth rate that 
is independent of the computer hardware and 
compiler. The functions ignore the constants and 
hold for sufficiently large input sizes n.  

• Upper bound O(f(n)): at mostf(n) operations

• Lower bound �(f(n)): at leastf(n) operations

• Tight bound �(f(n)) : order off(n) operations
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Asymptotic upper bound – Big-Oh 

f (n) = O(g(n))
if there exist c > 0 and n0>1 
such that 

f (n)       c×g(n) 

for all n n0

f(n) =O(g(n))

cg(n) 

f(n)

n0

Let f (n) and g(n) be two functions 
from naturals to positive reals

≤
≥
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Asymptotic lower bound – Big-Omega 

f (n) = �(g(n))
if there exist c > 0 and n0>1 
such that 

f (n)       c×g(n)) 

for all n n0

≥
≥ f(n) = 

�
(g(n))

cg(n) 

n0

f(n)Let f (n) and g(n) be two functions 
from naturals to positive reals
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Asymptotic tight bound – Big-Theta 

f (n) = �(g(n))
if there exist c1,c2 > 0 and 
n0>1 such that 

0     c1×g(n)    f (n)    c2×g(n) 

for all n n0≥ f(n) = �(g(n)) 
Tight bound

c2g(n) 

n0

c1g(n) 

f(n)

≤ ≤ ≤

Let f (n) and g(n) be two functions 
from naturals to positive reals
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Graphs for O, �, and �

f(n) =O(g(n))
Upper bound 

cg(n) 

f(n)

n0

f(n) = �(g(n))
Lower bound 

cg(n) 

n0

f(n)

f(n) = �(g(n)) 
Tight bound

c2g(n) 

n0

c1g(n) 

f(n)
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Properties of the O, �, and � functions 
Theorem: f is tight iff it is an upper anda lower bound: 

f (n) = �(g(n)) iff f (n) = O(g(n)) and f (n) = �(g(n)) 

• Reflexivity: 

f (n) = O(f (n)); f (n) = �(f (n)); f (n) = �(f (n))

• Symmetry: 

f (n) = �(g(n)) iff g(n) = �(f (n)) 

• Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) then f (n) = O(h(n))

f(n) = �(g(n)) and g(n) = �(h(n)) then f (n) = �(h(n))

f(n) = �(g(n)) and g(n) = �(h(n)) then f (n) = �(h(n))
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Properties of the O, �, and � functions  
For O, �, and �: 

• O(O(f (n)) = O(f (n))

• O(f (n) + g(n)) = O(f (n)) + O(g(n))

• O(f (n).g(n)) = O(f (n)).O(g(n))

• O(log n) = O(lg n)                            lg is log2

• Polynomials:

• Factorials: 
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Asymptotic functions
• Asymptotic functions are used in conjunction with 

recurrence equations to derive complexity bounds  

• Proving a lower bound for an algorithm is usually 
harder than proving an upper bound for it. Proving a 
tight bound is hardest!

• Note: still does not answer the if this is the least or the 
mostwork for the given problem. For this, we need to 
consider upper and lower problem bounds (later in the 
course). 


