Introduction to Artificial Intelligence

Programs and algorithms

* Why do we need algorithms?

- to solve problems with a computing device
Introduction « What is the difference between an algorithm and
a program?

-> a program is aimplementation of an
algorithm to be run on a specific computer and

Data Structures — LECTURE 1

» Motivation: algorithms and abstract data type
Easy problems, hard problems operating system

* Examples: sorting > an algorithm is more abstract — it does not
» Course contents deal with machine specific details — think of it g
amethod to solve a problem.

» The course emphasis is on algorithms.

DAST, Spring 2006, © L. Joskowicz 1 DAST, Spring 2006, 5 L. Joskowicz 2

UJ

Data structures Abstract Data Types —ADT

* A data structure is a method of storing data for

the purpose of efficient computation » An abstract data type is a collection of formal

specification®of data-storing entities with a well

- variables, arrays, linked lists, binary trees designed set of operations.
* How data is stored is key for how a problem will * The set of operations defined with the ADT
be solved. specification are the operations it “supports”
« Assumptions about the data determine what data | * What is the difference between a data structur
structure and algorithm will be used a class of objects) and an ADT?
- sortingintegers vs. words - The data structure or class isienplementation

. : of the ADT to be run on a specific computer an
Data structures and algorithm development go operating system. Think of it as an abstract JA

together! You cannot have one without the oth class. The course emphasis is on ADTS.

DAST, Spring 2006. © L. Joskowicz 3 DAST, Spring 2006. L. Joskowicz 4

)
=

Focus of the course Algorithms and problem solving
* In this course, we will study algorithms and Say you have a computational problemto solve
ADTs for solving the most common « Is there an algorithm that solves it?
computational problems: - not always! Example: the halting problem.
searching, sorting, indexing, ... « Is there an efficieralgorithm that solves it?
» We will learn how to rigorously analyze an - not always! Example: packing problem.
algorithms in terms adpace and time complexity « Is my algorithm the best possible algorithm?
- is A, always better thaA,? - not necessarily! Example: sorting inr@y
* We will learn how to adapt know algorithms * What is the best algorithm we can develop?
and develop new ones. - sorting take$2(nlogn) time andQ(n) space.

Introduction to Artificial Intelligence

Easy problems, hard problems Easy problem: shortest path plannihg

« Over the past 50 years (and especially the last 30 years), Find the shortest path (minimum number of charlges

many algorithms for a wide variety of computational . . .
taské/ hagve been developed Y P and stops) between two stations in the Paris mefro

¢ A classification of hard and easy problems has also o
been developed, together with formal tools to prove
what is their complexity and how they are related to
each other.

- Equivalence classes cbmplexity
- Q(n) — linear;Q(nlogn);
— Q(n?) — quadraticQ(n¥) — polynomial;
— Q(2") — exponential;Q(2") doubly exponential
— unsolvable!

_ O(n)
“ " in the number
7. of segments

DAST, Spring 2006, © L. Joskowicz 7 DAST, Spring 2006, © L. Joskowicz 3

Bin packing: a hard problem! Bin packing: possible solutions

Given a board and a set of parts, pack them withHout —
overlap so that they occupy the smallest rectang|e. i

1]
L] M 40 squares

R
| T | []
7 parts, 30 squares | 1\ | 36 squares

DAST, Spring 2006, © L. Joskowicz 9 DAST, Spring 2006, © L. Joskowicz 10

What kind of efficiency?

Given an algorithn\, we can ask the following
Algorithm questions on |t§ timand space.omplexny.

» Best casewhat is the complexity for thmost
|| | | |1. generate all legal favorable kind of inout?

|| combinations avorable O_ puts .
2 record area covered . ¥Vorst tc)?sls_wgatflg thet ocomplexny for tHeast

3. keep the best one avorable kind o |n.pu ' i

» Average casewhat is the complexity for the
_ _ _ _ average kind of input?
can do for this problem?

DAST, Spring 2006, © L. Joskowicz 11 DAST, Spring 2006, © L. Joskowicz 12

Bin packing: optimal solution

30 squares

Introduction to Artificial Intelligence

Efficiency: sorting Bubble sort (1)
Given an array of n integers A[i], sort themin
increasing order. 84[55[61[10[18[35|22|9747] start

Two algorithms (among many others) to do this

s st 10]8[ss[z2[o7]a7] 1 ieraton

N

s3] 1 [5a] 0] 18]35 22[7]
_/

s3[o[10[1s]5s 227] 7

» BubbleSort compare two adjacent numbers, and
exchange them #[i-1] < A[i]. Repean times.

2d jteration

» MergeSortrecursively split the array in half, sont

th § i
each part, and then merge them together. N iteration

zzzzzzzzzzzz N DAST, Spring 2006. ©L. Joskowicz On e pa$
Bubble sort (2) Merge sort (1)
level
55/61]10[18[35[22|97|8afo7] 1*pass [5[2]2]6]1]3]2]6] 0
55]10]18]35[22] 61[47[84]97] 2dpass STaTaTe] [15TzTs]

[10]18[35]22]55]61[22[84]97] 3 pass

[5/4] [2]6] [1]3] [2]6] 2

[s]la] [2[e][a][3] [2]6] 3

10]18]2235[47[55]61[84]97] nn pass

n passes Split phase
Merge sort (2) Comparison
level
SPACE T I M E
|1‘2‘2‘3‘4‘5‘6‘6| 0 Best Worst | Average
Bubble] n n n2 n2/2
|2‘4‘5‘6| |1‘2‘3‘6| 1 Sort onepass | npasses | N/2 passes
|4 5| |2‘6| |1 3|‘?6| , Msergte nlogn | nlogn nlogn nlogn
7 or
[s] [4] [2][e][2][3] [2][6]3 MergeSort:
* Number of levels:'2n > | = log,n
Merge phase « Time for mergen

Introduction to Artificial Intelligence

Other types of algorithms and analysses Course topics (1)
Up to now, you have studied exact, deterministjc Techniques for formal analysis of asymptotic
algorithms. There are other types as well: algorithm complexity with recurrence equations
+ Randomized algorithmsnakes random choices .

Techniques for solving recurrence equations:

during execution: pick a random element from an substitution, recursion-tree, master method.

array instead of the first onr® minimize the

chances of always picking a bad one! * Proving upper and lower bounds
« Probabilistic analysis for randomized algorithmg « Sorting, in-depth: merge sort, quick sort,
« Approximation algorithmsinstead of finding an counting sort, radix sort, bucket sort.
optimal solution, find one close to-# bin
packing.

DAST, Spring 2006, © L. Joskowicz 19 DAST, Spring 2006, © L. Joskowicz 20

Course topics (2)

» Common ADTSs and their algorithms: heaps,
priority queues, binary trees, AVL trees, B-tregs

» Hash tables and hash functions

» Graph algorithms: Breadth-First Search, Depth
First Search, Shortest path algorithms, Minimum
Spanning Trees, Strongly Connected
Components.

* Union-Find of sets (time permitting).

