
Computer Communication 2005-6

Digital Communication in the Modern World

I/O Models
Select command

http://www.cs.huji.ac.il/~com1
com1@cs.huji.ac.il

Blocking Vs. Non-Blocking I/O

Everything in Unix is a File

– Unix programs do any sort of I/O, they do it by 
reading or writing to a file descriptor. 

– A file descriptor is simply an integer 
associated with an open file. 

– The file can be:
• Network connection (socket).
• Pipe.
• A real type on-the-disk file.
• Just about anything else. 

Blocking
• When you first create the socket descriptor with 
socket(), the kernel sets it to blocking. If you don't 
want a socket to be blocking, you have to make a call to 
fcntl():

#include <unistd.h> 
#include <fcntl.h>
#include <sys/socket.h> 
sockfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(sockfd, F_SETFL, O_NONBLOCK);

• If you try to read from a non-blocking socket and there's 
no data there, it's not allowed to block--it will return -1 
and errno will be set to EWOULDBLOCK



Blocking Vs. Non Blocking

• If you put your program in a busy-wait 
looking for data on the socket, you'll suck 
up CPU time. 

• You can execute multi-threaded
• A more elegant solution for checking to 

see if there's data waiting to be read 
comes in the synchronous mechanism of 
select().

select() 
Synchronous I/O Multiplexing 

• select() gives you the power to monitor several 
sockets at the same time. It'll tell you which ones are 
ready for reading, which are ready for writing, and 
which sockets have raised exceptions. 

#include <sys/time.h> 
#include <sys/types.h> 
#include <unistd.h> 
int select(int numfds, fd_set *readfds, 
fd_set *writefds, fd_set *exceptfds, 
struct timeval *timeout); 

select() 
• The parameter numfds should be set to the 

values of the highest file descriptor plus one.
• In order to manipulate fd_set use the 

following macros: 
– FD_ZERO(fd_set *set)

//clears the set
– FD_SET(int fd, fd_set *set)
//adds fd to the set 
– FD_CLR(int fd, fd_set *set)
//removes fd from the set 
– FD_ISSET(int fd, fd_set *set)
//tests to see if fd is in the set.

select()
• If the time specified in struct timeval is 

exceeded and select() still hasn't found any 
ready file descriptors, it'll return so you can 
continue processing. 

struct timeval { 
int tv_sec; //seconds
int tv_usec; //microseconds 

}; 
• If you set the fields in your struct timeval to 
0, select() will timeout immediately, 
effectively polling all the file descriptors in your 
sets. 

• If you set the parameter timeout to NULL, it will 
never timeout, and will wait until the first file 
descriptor is ready.



select()
• if you don't care about waiting for a certain set, 

you can just set it to NULL in the call to 
select().

• if you have a socket that is listen()'ing, you 
can check to see if there is a new connection by 
putting that socket's file descriptor in the readfds
set. 

• On success, select() returns the number of 
descriptors contained in the descriptor sets, 
which may be zero if the timeout expires before 
anything interesting happens. On error, -1 is 
returned, and errno is set appropriately; 

Example
int main() { 
struct timeval tv; 
fd_set readfds; 
tv.tv_sec = 2; 
tv.tv_usec = 500000; 
FD_ZERO(&readfds); 
FD_SET(STDIN, &readfds); 
select(STDIN+1, &readfds, 

NULL, NULL, &tv); 
if (FD_ISSET(STDIN, &readfds)) 

printf("A key was pressed!\n"); 
else 

printf("Timed out.\n"); 
return 0;

}


