
1

ג"ט אדר א תשס"כ1 The Computer Communications Course

BSD UNIX transport API:
The Socket Interface

ג"ט אדר א תשס"כ2 The Computer Communications Course

The Client-Server Programming Paradigm

■■ most networking applications can be divided into two pieces: most networking applications can be divided into two pieces:
clientclient and and serverserver

• Client is usually short-lived process, communicates with one server
at a time, simpler design

• Server usually runs forever, communicates with multiple clients at
any given moment, design is complex

Server waits for requests from clients and serves them.
• The server can either handle requests iteratively,

or concurrently (by spawning child processes)

Client asks a server to do some work and send back the results.

request

response

ServerClient

2

ג"ט אדר א תשס"כ3 The Computer Communications Course

UNIX I/O Paradigm and Network I/O
■■ UNIX UNIX openopen--readread--writewrite--closeclose paradigmparadigm
■■ network communication functionality is more complex:network communication functionality is more complex:

◆◆ specify communication endpointsspecify communication endpoints
◆◆ client vs server behaviorclient vs server behavior
◆◆ specify transport protocol (TCP or UDP)specify transport protocol (TCP or UDP)
◆◆ etcetc

■■ Several new operating system calls were added Several new operating system calls were added
as well as new library routines.as well as new library routines.

■■ General mechanism provided to accommodate many General mechanism provided to accommodate many
protocols and addressing schemes.protocols and addressing schemes.

ג"ט אדר א תשס"כ4 The Computer Communications Course

0 HOPOPT IPv6 Hop0 HOPOPT IPv6 Hop--byby--Hop Option [RFC1883]Hop Option [RFC1883]
1 ICMP 1 ICMP Internet Control Message [RFC792]Internet Control Message [RFC792]
2 IGMP Internet Group Management [RFC2 IGMP Internet Group Management [RFC1112]1112]
3 GGP Gateway3 GGP Gateway--toto--Gateway [RFC823]Gateway [RFC823]
4 IP IP in IP (encapsulation) 4 IP IP in IP (encapsulation) [RFC2003][RFC2003]
5 ST Stream 5 ST Stream
[RFC1190,RFC1819][RFC1190,RFC1819]
6 TCP Transmission Control 6 TCP Transmission Control [RFC793][RFC793]

……
17 UDP User 17 UDP User Datagram Datagram
[RFC768,JBP][RFC768,JBP]

……

/etc/protocols

3

ג"ט אדר א תשס"כ5 The Computer Communications Course

Specifying A Protocol Interface

Designers at Berkeley wanted to accommodate multiple set of Designers at Berkeley wanted to accommodate multiple set of
communication protocols.communication protocols.
They provided generality far beyond TCP/IP:They provided generality far beyond TCP/IP:

◆◆ multiple multiple protocol familiesprotocol families
◆◆ multiple multiple types of servicetypes of service
◆◆ multiple multiple addressing familiesaddressing families

ג"ט אדר א תשס"כ6 The Computer Communications Course

The Socket Abstraction

■■ The socket is a new abstraction for network communication.The socket is a new abstraction for network communication.
■■ Like files, each socket is identified by a small integer calledLike files, each socket is identified by a small integer called

its its socket descriptorsocket descriptor..
UNIX allocates socket descriptors in the same table as fileUNIX allocates socket descriptors in the same table as file
descriptors.descriptors.

■■ Single system call is sufficient to create any socket.Single system call is sufficient to create any socket.
■■ Once the socket has been created, an applicationOnce the socket has been created, an application

must make additional system calls to specify the details ofmust make additional system calls to specify the details of
exact use.exact use.

4

ג"ט אדר א תשס"כ7 The Computer Communications Course

System Data Structures for Sockets
family: PF_INET

service: SOCK_STREAM

Local IP:
Remote IP:
Local port:

Remote port:

0:
1:
2:
3:

4:

To the
system file

table

ג"ט אדר א תשס"כ8 The Computer Communications Course

Creating a Socket
The The socketsocket system call creates sockets on demand :system call creates sockets on demand :

sd = sd = socketsocket(protocol_family, service_type, protocol);(protocol_family, service_type, protocol);

TCP/IP internet protocol family: TCP/IP internet protocol family: PF_INETPF_INET
Example Service Types:Example Service Types:

◆◆ reliable stream delivery service (reliable stream delivery service (SOCK_STREAMSOCK_STREAM))
◆◆ connectionless datagram delivery service (connectionless datagram delivery service (SOCK_DGRAMSOCK_DGRAM))
◆◆ raw type (raw type (SOCK_RAWSOCK_RAW))

5

ג"ט אדר א תשס"כ9 The Computer Communications Course

Socket Inheritance
UNIX uses the UNIX uses the forkfork and and execexec system calls to start new applicationsystem calls to start new application
programs. It is a twoprograms. It is a two--step procedure:step procedure:

◆◆ forkfork creates a separate copy of the currently executing creates a separate copy of the currently executing
process.process.

◆◆ By calling By calling execexec, the new copy replaces itself with the desired, the new copy replaces itself with the desired
application program.application program.

When a program calls When a program calls forkfork, the newly created process inherits , the newly created process inherits
access to all open sockets just as it inherits access to all opeaccess to all open sockets just as it inherits access to all open files.n files.
When a program calls When a program calls execexec, the new application retains access to , the new application retains access to
all open sockets. all open sockets.

ג"ט אדר א תשס"כ10 The Computer Communications Course

Socket Termination
When a process finishes using a socket it calls When a process finishes using a socket it calls close::

closeclose(sock_d);(sock_d);

The The shutdown call causes all or part of a fullcall causes all or part of a full--duplex connection duplex connection
on the socket associated with sock_d to be shut down. on the socket associated with sock_d to be shut down.

◆◆ If how is 0, further receives will be disallowed. If how is 0, further receives will be disallowed.
◆◆ If how is 1, further sends will be disallowed. If how is 1, further sends will be disallowed.
◆◆ If how is 2, further sends and receives will be disallowedIf how is 2, further sends and receives will be disallowed..

shutdownshutdown(sock_d, how);(sock_d, how);

6

ג"ט אדר א תשס"כ11 The Computer Communications Course

TCP Communication Endpoint
■■ A protocol family is free to choose one or more addressing A protocol family is free to choose one or more addressing

schemes to define address representations.schemes to define address representations.
The socket abstraction defines an The socket abstraction defines an address family for each for each
type of address.type of address.
The TCP/IP protocols (The TCP/IP protocols (PF_INETPF_INET protocol family) all use a protocol family) all use a
single address representation: single address representation: AF_INETAF_INET..

■■ TCP/IP TCP/IP communication endpoint: :
(IP address, port number)(IP address, port number)

Other protocols define their endpoint addresses in other Other protocols define their endpoint addresses in other
waysways..

ג"ט אדר א תשס"כ12 The Computer Communications Course

TCP/IP Endpoint Address

The The sockaddr_in structure (/usr/include/netinet/in.h) structure (/usr/include/netinet/in.h)
specifies the TCP/IP endpoint format:specifies the TCP/IP endpoint format:

structstruct sockaddr_insockaddr_in {{
u_char sin_len; u_char sin_len; /* total address length, don/* total address length, don’’t touch it! */t touch it! */
u_char sin_family; u_char sin_family; /* address family (AF_INET) *//* address family (AF_INET) */
u_short sin_port; u_short sin_port; /* port number *//* port number */
struct in_addr sin_addr; struct in_addr sin_addr; /* IP address *//* IP address */
char sin_zero[8]; char sin_zero[8]; /* unused, must be zero *//* unused, must be zero */

};};

7

ג"ט אדר א תשס"כ13 The Computer Communications Course

Specifying Endpoint Addresses

■■ Newly created socket has no association to local or Newly created socket has no association to local or
destination address.destination address.

■■ Server processes that operate at a wellServer processes that operate at a well--known port must be known port must be
able to specify that port to the system:able to specify that port to the system:

bind(sd, local_addr, addr_len); (sd, local_addr, addr_len);
■■ For a client, the protocol software chooses local address and For a client, the protocol software chooses local address and

port automatically.port automatically.
After creating a socket, a client calls After creating a socket, a client calls connect to establish to establish
an an
active reliable byte stream connection to remote server:active reliable byte stream connection to remote server:

connect(sd, dest_addr, addr_len);(sd, dest_addr, addr_len);

ג"ט אדר א תשס"כ14 The Computer Communications Course

Sending and Receiving Data through
a Socket

Once an application has established a socket, it canOnce an application has established a socket, it can
use the socket to transmit and receive data. use the socket to transmit and receive data.

write(sd, buffer, buffer_len);(sd, buffer, buffer_len);
read(sd, buffer, buffer_len);(sd, buffer, buffer_len);

✺ Caveat !
Since TCP is a byteSince TCP is a byte--stream protocol stream protocol read()read() / / write()write()
can return with less bytes than it was requested.can return with less bytes than it was requested.
When reading/writing from/to a TCP socket When reading/writing from/to a TCP socket alwaysalways use loop!use loop!

8

ג"ט אדר א תשס"כ15 The Computer Communications Course

Specifying a Queue Length
for a Server

If computing a response takes nontrivial amount of time, a If computing a response takes nontrivial amount of time, a
new request may arrive before a server finishes responding new request may arrive before a server finishes responding
to an old request.to an old request.
The server may tell the underlying protocol softwareThe server may tell the underlying protocol software
that it wishes to have that requests enqueued until it has time that it wishes to have that requests enqueued until it has time
to process them.to process them.

listen(sd, backlog);(sd, backlog);
■■ converts socket to the converts socket to the listeninglistening socket on which incoming socket on which incoming

connections from clients can be acceptedconnections from clients can be accepted
■■ backlog backlog specifies the maximum number of client connections specifies the maximum number of client connections

that the kernel will queue for that the kernel will queue for the socket..

ג"ט אדר א תשס"כ16 The Computer Communications Course

How a Server accepts Connections
Once a socket has been established (socket, bind, listen), a serOnce a socket has been established (socket, bind, listen), a server ver
needs to wait for a connection. To do so, it uses system call needs to wait for a connection. To do so, it uses system call accept..
■■ A call to A call to accept blocks until a connection request arrives.blocks until a connection request arrives.
■■ When a client initiates the connection (When a client initiates the connection (connectconnect) the TCP) the TCP threethree--

way handshake (3WHS) way handshake (3WHS) protocol is initiatedprotocol is initiated
■■ If 3WHS is successful a new TCP connection is established and If 3WHS is successful a new TCP connection is established and

acceptaccept returns a new descriptor (returns a new descriptor (connectedconnected descriptor) for descriptor) for
communication with the new client (communication with the new client (read()/write()read()/write()))

newsock = newsock = acceptaccept(sd, addr, addr_len);(sd, addr, addr_len);

9

ג"ט אדר א תשס"כ17 The Computer Communications Course

Servers that handle Multiple Services

A server may wait for connections on multiple sockets. A server may wait for connections on multiple sockets.
The system call, The system call, select, applies to I/O in general, not just to , applies to I/O in general, not just to
communication over sockets.communication over sockets.
A call to A call to select blocks waiting for one of a set of file descriptorsblocks waiting for one of a set of file descriptors
to become ready:to become ready:

nready = nready = selectselect(max_desc, in_desc, out_desc, exc_desc, timeout);(max_desc, in_desc, out_desc, exc_desc, timeout);

ג"ט אדר א תשס"כ18 The Computer Communications Course

Network Byte Order: Big Endian
- Big Endian (SPARC, IBM 370, PDP-10, Motorola, RISC):

n n+1 n+2 n+3

Most significant byte Least significant byte

- Little Endian (Intel, VAX, PDP-11):

n n+1 n+2 n+3

Least significant byte Most significant byte

- Middle Endian (2-3-0-1 or 1-0-3-2)

10

ג"ט אדר א תשס"כ19 The Computer Communications Course

BSD UNIX Network Library Calls

■■ network byte order conversion routinesnetwork byte order conversion routines
local_short = local_short = ntohs(net_short); local_long = (net_short); local_long = ntohl(net_long);(net_long);
net_short = net_short = htons(local_short); net_long = (local_short); net_long = htonl(local_long);(local_long);

■■ address manipulation routinesaddress manipulation routines
ip_addr = ip_addr = inet_addr(dotted_decimal);(dotted_decimal);
dotted_decimal = dotted_decimal = inet_ntoa(ip_addr);(ip_addr);

■■ obtaining info about protocolsobtaining info about protocols
protocol_struct = protocol_struct = getprotobyname(name);(name);

ג"ט אדר א תשס"כ20 The Computer Communications Course

Obtaining Info about Hosts

host_struct = host_struct = gethostbyname(domain_name);(domain_name);
struct hostent {

char *h_name; char *h_name; /* official name of host *//* official name of host */
char **h_aliases; char **h_aliases; /* alias list *//* alias list */
int h_addrtype; int h_addrtype; /* host address type *//* host address type */
int h_length; int h_length; /* length of an address *//* length of an address */

char **h_addr_list; /* char **h_addr_list; /* list of addresses from name server */list of addresses from name server */
#define #define h_addrh_addr h_addr_list[0] h_addr_list[0] /* first IP address *//* first IP address */

};};

11

ג"ט אדר א תשס"כ21 The Computer Communications Course

Using Socket Calls in A Program
socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

Connection establishment

Data (request)

Data (reply)

Client:

Server:

close() End-of-file
notification

ג"ט אדר א תשס"כ22 The Computer Communications Course

Our First Socket Program

■■ A simple TCP dayA simple TCP day--time client/server:time client/server:
■■ Client: establishes a TCP connection with a serverClient: establishes a TCP connection with a server
■■ Server: accepts the connection and sends back the current Server: accepts the connection and sends back the current

time and date in human readable formtime and date in human readable form
◆◆ iterative: serves only a single client at a timeiterative: serves only a single client at a time

12

ג"ט אדר א תשס"כ23 The Computer Communications Course

1 int main(int argc, char **argv) {

4 int sockfd, n;
5 char recvline[MAXLINE + 1];
6 struct sockaddr_in servaddr;

8 sockfd = socket(PF_INET, SOCK_STREAM, 0);
9 bzero(&servaddr, sizeof(servaddr));
10 servaddr.sin_family = AF_INET;
11 servaddr.sin_port = htons(13); /* daytime server */
12 inet_pton(AF_INET, argv[1], &servaddr.sin_addr);
13 connect(sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr));
14 while ((n = read(sockfd, recvline, MAXLINE)) > 0) {
15 recvline[n] = ‘\0’; /* null terminate */
16 fputs(recvline, stdout);
17 }
18 exit(0);
19 }

Day-Time TCP Client

ג"ט אדר א תשס"כ24 The Computer Communications Course

Day-Time TCP Server
1 int main(int argc, char **argv) {
2 int listenfd, connfd;
3 struct sockaddr_in servaddr;
4 char buff[MAXLINE];
5 time_t ticks;

6 6

7 7 listenfd = socket(PF_INET, SOCK_STREAM, 0);
8 bzero(&servaddr, sizeof(servaddr));
9 servaddr.sin_family = AF_INET;
10 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
11 servaddr.sin_port = htons(13); /* daytime server */

13

ג"ט אדר א תשס"כ25 The Computer Communications Course

Day-Time TCP Server (contd)
12 bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));
13 listen(listenfd, LISTENQ);
14
15 for (; ;) {
16 connfd = accept(listenfd, (struct sockaddr *) NULL, NULL);
17 ticks = time(NULL);
18 snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
19 write(connfd, buff, strlen(buff));
20 close(connfd);
21 }
22 }

ג"ט אדר א תשס"כ26 The Computer Communications Course

UDP

■■ s = socket(PF_INET, SOCK_DGRAM, 0)s = socket(PF_INET, SOCK_DGRAM, 0)
■■ connect(s, connect(s, sockaddrsockaddr, , addraddr__lenlen))
■■ sendtosendto(s, message, (s, message, msgmsg__lenlen, 0 , , 0 , sockaddrsockaddr_to, _to, addraddr__lenlen))
■■ send(s, message,send(s, message, msgmsg__lenlen, 0), 0)
■■ recvfromrecvfrom(s, &(s, &bufbuf, , bufbuf__lenlen, 0, &, 0, &sockaddrsockaddr_from, from__from, from_lenlen))

■■ recvrecv(s, &(s, &bufbuf,, bufbuf__lenlen, 0), 0)

14

ג"ט אדר א תשס"כ27 The Computer Communications Course

Further Info Sources
■■ /etc/protocols/etc/protocols
■■ man pagesman pages
■■ /usr/include//usr/include/

◆◆ sys/types.hsys/types.h
◆◆ sys/socket.hsys/socket.h
◆◆ netinet/in.hnetinet/in.h
◆◆ netdb.hnetdb.h

