
Computer Communication 2005-6 1

Digital Communication in the
Modern World

Transport Layer
Multiplexing, UDP

http://www.cs.huji.ac.il/~com1
com1@cs.huji.ac.il

Some of the slides have been borrowed from:
Computer Networking: A Top Down Approach Featuring the Internet,

2nd edition.
Jim Kurose, Keith Ross

Addison-Wesley, July 2002.

Computer Communication 2005-6 2

IPC – Inter Process Communication:
Files, Named pipes and Sockets

• Files
– slow
– unsecure

• Named pipes
– not suitable for network

• Sockets
– suitable for networking

Transport Layer 3

Transport vs. Network layer

network layer: logical
communication
between hosts
transport layer: logical
communication
between processes

relies on and enhances
network layer services

Household analogy:
12 kids sending letters

to 12 kids
processes = kids
app messages = letters
in envelopes
hosts = houses
transport protocol =
Tzipi and Udi
network-layer protocol
= postal service

Transport Layer 4

Internet transport-layer protocols

reliable, in-order
delivery:TCP

congestion control
flow control
connection setup

unreliable, unordered
delivery: UDP

no-frills extension of
“best-effort” IP

services not available:
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport Layer 5

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 6

How demultiplexing works
host receives IP datagrams

each datagram has source
IP address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 7

Connectionless demultiplexing

Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);
UDP socket identified by
two-tuple:

(source IP address, source port number)

When host receives UDP
segment:

checks destination port
number in segment
directs UDP segment to
socket with that port
number

IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 8

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 9

Connection-oriented demux

TCP socket identified
by 4-tuple:

source IP address
source port number
dest IP address
dest port number

recv host uses all four
values to direct
segment to appropriate
socket

Server host may support
many simultaneous TCP
sockets:

each socket identified by
its own 4-tuple

Web servers have
different sockets for
each connecting client

non-persistent HTTP will
have different socket for
each request

Transport Layer 10

Connection-oriented demux
(cont)

Client
IP:B

P3

client
IP: A

P1P1P3

server
IP: C

SP: 80
DP: 9157

SP: 9157
DP: 80

SP: 80
DP: 5775

SP: 5775
DP: 80

P4

Transport Layer 11

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport
protocol
“best effort” service, UDP
segments may be:

lost
delivered out of order
to app

connectionless:
no handshaking between
UDP sender, receiver
each UDP segment
handled independently
of others

Why is there a UDP?
no connection
establishment (which can
add delay)
simple: no connection state
at sender, receiver
small segment header
no congestion control: UDP
can blast away as fast as
desired

Transport Layer 12

UDP: more
often used for streaming
multimedia apps

loss tolerant
rate sensitive

other UDP uses
DNS
SNMP

reliable transfer over UDP:
add reliability at
application layer

application-specific
error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 13

UDP checksum

Sender:
treat segment contents
as sequence of 16-bit
integers
checksum: addition (1’s
complement sum) of
segment contents
sender puts checksum
value into UDP checksum
field

Receiver:
compute checksum of
received segment
check if computed checksum
equals checksum field value:

NO - error detected
YES - no error detected.
But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 14

UDP checksum - example
Suppose we have three 16-bit words
0110011001100110
0101010101010101
0000111100001111

The sum of the first of these three words
0110011001100110
0101010101010101
1011101110111011

Transport Layer 15

UDP checksum - example
Adding the third word to the above sum give
1011101110111011
0000111100001111
1100101011001010

The 1’s complement is obtained by converting all the
0s to 1s and all the 1s to 0s. Thus the 1’s complement
of the sum 110010101100101 is 0011010100110101,
which becomes the checksum.
At the receiver all three words and the checksum are
added. If no errors were added then the sum will be:
1111111111111111.

