
1

Digital Communication in the 
Modern World

Lesson 2
SMTP, Sockets, Threads

http://www.cs.huji.ac.il/~com1
com1@cs.huji.ac.il



2

Electronic Mail
Three major components:
• user agents (clients)
• mail servers 
• simple mail transfer protocol: 

SMTP

User Agent
• a.k.a. “mail reader”
• composing, editing, reading mail 

messages
• e.g., Eudora, Outlook, elm, 

Netscape Messenger, PINE
• outgoing, incoming messages 

stored on server

user mailbox

outgoing 
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP



3

Electronic Mail: mail servers

Mail Servers
• mailbox contains incoming 

messages for user
• message queue of outgoing (to 

be sent) mail messages
• SMTP protocol between mail 

servers to send email 
messages
– client: sending mail server
– “server”: receiving mail 

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP



4

Electronic Mail: SMTP [RFC 2821]

• Uses TCP to reliably transfer email message from client to 
server, port 25

• Direct transfer: sending server to receiving server
• Three phases of transfer

– handshaking (greeting)
– transfer of messages
– closure

• Command/response interaction
– commands: ASCII text
– response: status code and phrase

• Messages must be in 7-bit ASCII



5

Scenario: Alice sends message to 
Bob

1) Alice uses UA to compose 
message and “to”
bob@someschool.edu

2) Alice’s UA sends message 
to her mail server; message 
placed in message queue

3) Client side of SMTP opens 
TCP connection with Bob’s 
mail server

4) SMTP client sends Alice’s 
message over the TCP 
connection

5) Bob’s mail server places the 
message in Bob’s mailbox

6) Bob invokes his user agent 
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6



6

Sample SMTP interaction
S: 220 mail.cs.huji.ac.il
C: HELO mail.cs.huji.ac.il
S: 250  Hello mail.cs.ac.il, pleased to meet you 
C: MAIL FROM: <falafel@cs.huji.ac.il> 
S: 250 falafel@cs.huji.ac.il... Sender ok 
C: RCPT TO: <sabih@pita.com> 
S: 250 sabih@pita.co ... Recipient ok 
C: DATA 
S: 354 Enter mail, end with "." on a line by itself
C: From: me@something
C: To: you@somewhere
C: Subject: lunch…
C: Do you want with hilbe? 
C: . 
S: 250 Message accepted for delivery 
C: QUIT 
S: 221 mail.cs.huji.ac.il closing connection



7

Try SMTP interaction for yourself:

• telnet servername 25
• see 220 reply from server
• enter HELO, MAIL FROM, RCPT TO, DATA, QUIT 

commands
above lets you send email without using email client 

(reader)



8

SMTP: final words
• SMTP uses persistent 

connections
• SMTP requires message 

(header & body) to be in 7-
bit ASCII

• SMTP server uses 
CRLF.CRLF to determine end 
of message

Comparison with HTTP:
• HTTP: pull
• SMTP: push

• both have ASCII 
command/response 
interaction, status codes

• HTTP: each object 
encapsulated in its own 
response msg

• SMTP: multiple objects sent 
in multipart msg



9

Mail message format
SMTP: protocol for exchanging 

email msgs
RFC 822: standard for text 

message format:
• header lines, e.g.,

– To:
– From:
– Subject:
different from SMTP 

commands!
• body

– the “message”, ASCII 
characters only

header

body

blank
line



10

MIME types
Similar to file extensions but more universally accepted 
"MIME types" are used to identify the type of information 
that a file contains. While the file extension .html is 
informally understood to mean that the file is an HTML 
page, there is no requirement that it mean this, and many 
HTML pages have different file extensions. In the HTTP 
protocol used by web browsers to talk to web servers, the 
"file extension" of the URL is not used to determine the 
type of information that the server will return. Indeed, 
there may be no file extension at all at the end of the URL. 
Instead, the web server specifies the correct MIME type 
using a Content-type: header when it responds to the web 
browser's HTTP request. 
MIME stands for "Multimedia Internet Mail Extensions." 
MIME was originally invented to solve a similar problem for 
email attachments where the client is responsible for 
correctly displaying the requested file.



11

Message format: multimedia 
extensions

• MIME: multimedia mail extension, RFC 2045, 2056
• additional lines in msg header declare MIME content 

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe. 
MIME-Version: 1.0 
Content-Transfer-Encoding: base64 
Content-Type: image/jpeg 

base64 encoded data ..... 
......................... 
......base64 encoded data 

multimedia data
type, subtype, 

parameter declaration

method used
to encode data

MIME version

encoded data



12

MIME types
Content-Type: type/subtype; 

parameters
Text
• example subtypes: plain, 

html

Image
• example subtypes: jpeg, 

gif

Audio
• exampe subtypes: basic (8-

bit mu-law encoded), 
32kadpcm (32 kbps coding)

Video
• example subtypes: mpeg, 

quicktime

Application
• other data that must be 

processed by reader before 
“viewable”

• example subtypes: msword, 
octet-stream 



13

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe. 
MIME-Version: 1.0 
Content-Type: multipart/mixed; boundary=StartOfNextPart

--StartOfNextPart
Dear Bob, Please find a picture of a crepe.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data ..... 
......................... 
......base64 encoded data 
--StartOfNextPart
Do you want the recipe?



14

Mail access protocols

• SMTP: delivery/storage to receiver’s server
• Mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download 

– IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

– HTTP: Hotmail , Yahoo! Mail, Gmail, etc.

user
agent

sender’s mail 
server

user
agent

SMTP SMTP access
protocol

receiver’s mail 
server



15

POP3 protocol
authorization phase
• client commands: 

– user: declare username
– pass: password

• server responses
– +OK

– -ERR

transaction phase, client:
• list: list message numbers
• retr: retrieve message by 

number
• dele: delete
• quit

C: list 
S: 1 498 
S: 2 912 
S: . 
C: retr 1 
S: <message 1 contents>
S: . 
C: dele 1 
C: retr 2 
S: <message 1 contents>
S: . 
C: dele 2 
C: quit 
S: +OK POP3 server signing off

S: +OK POP3 server ready 
C: user bob 
S: +OK 
C: pass hungry 
S: +OK user successfully logged on



16

POP3 (more) and IMAP
More about POP3
• Previous example uses 

“download and delete”
mode.

• Bob cannot re-read e-
mail if he changes 
client

• “Download-and-keep”: 
copies of messages on 
different clients

• POP3 is stateless 
across sessions

IMAP
• Keep all messages in 

one place: the server
• Allows user to 

organize messages in 
folders

• IMAP keeps user state 
across sessions:
– names of folders and 

mappings between 
message IDs and folder 
name



17

Socket programming

Socket API
introduced in BSD4.1 UNIX, 
1981
explicitly created, used, 
released by apps 
client/server paradigm 
two types of transport 
service via socket API: 

unreliable datagram 
reliable, byte stream-
oriented 

a host-local, application-
created/owned, 

OS-controlled interface 
(a “door”) into which

application process can 
both send and 

receive messages to/from 
another (remote or 

local) application process

socket

Goal: learn how to build application that communicate 
using sockets



18

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UDP or TCP)
TCP service: reliable transfer of bytes from one 

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet



19

Socket programming with TCP
Client must contact server

server process must first 
be running
server must have created 
socket (door) that 
welcomes client’s contact

Client contacts server by:
creating client-local TCP 
socket
specifying IP address, port 
number of server process

When client creates socket: 
client TCP establishes 
connection to server TCP
When contacted by client, 
server TCP creates new 
socket for server process to 
communicate with client

allows server to talk with 
multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”) 
between client and server

application viewpoint



20

Stream jargon

A stream is a sequence of characters that flow into or out 
of a process.
An input stream is attached to some input source for the 
process, e.g., keyboard or socket.
An output stream is attached to an output source, e.g., 
monitor or socket.



21

Socket programming with TCP

Example client-server app:
client reads line from 
standard input (inFromUser
stream) , sends to server via 
socket (outToServer
stream)
server reads line from socket
server converts line to 
uppercase, sends back to 
client
client reads, prints  modified 
line from socket 
(inFromServer stream)

Input stream: sequence of 
bytes into process

Output stream: sequence of 
bytes out of process

client socket

inFromUser o
u
t
T
o
S
e
r
v
e
r

i
i
n
F
r
o
m
S
e
r
v
e
r



22

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket = 

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket = 

Socket()

close
connectionSocket

read reply from
connectionSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
connection setup



23

Example: Java client (TCP)

import java.io.*; 
import java.net.*; 
class TCPClient { 

public static void main(String argv[]) throws Exception 
{ 

String sentence; 
String modifiedSentence; 

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in)); 

Socket clientSocket = new Socket("hostname", 6789); 

DataOutputStream outToServer = 
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create 
client socket, 

connect to server
Create

output stream
attached to socket



24

Example: Java client (TCP), cont.

BufferedReader inFromServer = 
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream())); 

sentence = inFromUser.readLine(); 

outToServer.writeBytes(sentence + '\n'); 

modifiedSentence = inFromServer.readLine(); 

System.out.println("FROM SERVER: " + modifiedSentence); 

clientSocket.close(); 

} 
}

Create
input stream

attached to socket

Send line
to server

Read line
from server



25

Example: Java server (TCP)
import java.io.*; 
import java.net.*; 

class TCPServer { 

public static void main(String argv[]) throws Exception 
{ 

String clientSentence; 
String capitalizedSentence; 

ServerSocket welcomeSocket = new ServerSocket(6789); 

while(true) { 

Socket connectionSocket = welcomeSocket.accept(); 

BufferedReader inFromClient = 
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream())); 

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached 

to socket



26

Example: Java server (TCP), cont

DataOutputStream outToClient = 
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine(); 

capitalizedSentence = clientSentence.toUpperCase() + '\n'; 

outToClient.writeBytes(capitalizedSentence); 
} 

} 
}

Read in  line
from socket

Create output
stream, attached 

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection



27

Socket programming: references

C-language tutorial (audio/slides):
“Unix Network Programming” (J. Kurose),

http://manic.cs.umass.edu/~amldemo/courseware/intro.

Java-tutorials:
“All About Sockets” (Sun tutorial), 
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-
sockets.html
“Socket Programming in Java: a tutorial,”
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-
sockets.html



28

What is a Thread?

Definition: A thread is a single sequential 
flow of control within a program
Multi-thread programming allows to 
perform several tasks “at the same time”.



29

Java Threads (1)

java.lang.Thread or interface Runnable
http://java.sun.com/docs/books/tutorial/essential
/threads/
To implement a thread using the Thread class, you 
need to provide it with a run method that 
performs the thread’s task



30

Java Threads (2)

class PrimeThread extends Thread { 
long minPrime; 

PrimeThread(long minPrime) { 
this.minPrime = minPrime; 

} 
public void run() { 

// compute primes larger than minPrime . . . 
} 

}
PrimeThread p = new PrimeThread(143); 
p.start(); 



31

Customizing a Thread's run 
Method

The run method gives a thread something 
to do. 
There are two techniques for providing a 
run method for a thread: 

Subclassing Thread 
Overriding run Implementing the Runnable
Interface 



32

Synchronizing Threads 

Sometimes threads that run concurrently 
share data and must consider the state and 
activities of other threads. 
Because the threads share a common 
resource, they must be synchronized in 
some way.



33

Locking an Object

The code segments within a program that access 
the same object from separate, concurrent 
threads are called critical sections. 
In the Java language, a critical section can be a 
block or a method and is identified with the 
synchronized keyword. 
The Java platform then associates a lock with 
every object that has synchronized code. 



34

notify, notifyAll and wait Methods

wait(timeout) Waits for notification OR until the 
timeout period has elapsed
notify  arbitrarily wakes up one of the threads 
waiting on this object.
notifyAll method wakes up all threads waiting on 
the object in question

The awakened threads compete for the lock. One thread 
gets it, and the others go back to waiting. The Object
class also defines the notify method, which arbitrarily 
wakes up one of the threads waiting on this object.



35

Timer and TimerTask Classes

Whenever possible, you should use high-
level thread API such as the java.util.Timer
and its companion class, TimerTask are 
useful when your program must perform a 
task repeatedly or after a delay. 



36

Simple demo that uses java.util.Timer 
to schedule a task to execute once 5 seconds have passed

public class Reminder {
Timer timer;
public Reminder(int seconds) {

timer = new Timer();
timer.schedule(new RemindTask(),seconds*1000);

}



37

class RemindTask

class RemindTask extends TimerTask {
public void run() {

System.out.println("Time's up!");
timer.cancel(); // Terminate the timer thread

} 
}

public static void main(String args[]) {
System.out.println("About to schedule task.");
new Reminder(5);
System.out.println("Task scheduled.");

}



38

Four ways to stop Timer Threads 

Invoke cancel on the timer. You can do this from 
anywhere in the program, such as from a timer 
task’s run method. 
Make the timer’s thread a “daemon” by creating 
the timer like this: new Timer(true). If the only 
threads left in the program are daemon threads, 
the program exits. 
After all the timer’s scheduled tasks have finished 
executing, remove all references to the Timer
object. Eventually, the timer’s thread will 
terminate. 
Invoke the System.exit method, which makes the 
entire program (and all its threads) exit. 


