
Towards Flexible Teamwork in Behavior-Based Robots:
Extended Abstract

Gal A. Kaminka �

The MAVERICK Group
Computer Science Department

Bar Ilan University, Israel

galk@cs.biu.ac.il

Inna Frenkel
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

frenkei1@cs.biu.ac.il

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence and coor-
dination
General Terms
Algorithms, Design
Keywords
Multi-Robot Systems, Multi-Agent Systems

1. INTRODUCTION
Research into teamwork in autonomous robots is quickly gaining

significant interest, motivated by future applications of multi-robot
teams. A key challenge is to automate the control of teamwork,
such that the designer can focus on the taskwork to be done. Team-
work architectures have been proposed to automate the interactions
between team-members, in order to facilitate robust and speedy de-
ployment. Existing architectures provide important teamwork ser-
vices to deployed teams, such as synchronized task execution [4],
and task allocation [3, 1, 5]. These allow the designer to spend
most efforts on building controllers for the specific tasks to be car-
ried out, rather than the collaboration of the robots.

However, existing architectures leave important challenges open
when applied to multi-robot teams. First, most existing robot team-
work architectures do not address both synchronized task execu-
tion and dynamic task allocation in a single architecture. Thus the
team’s developer must make a choice as to whether synchronization
or allocation is more important. Second, with rare exceptions, ex-
isting architectures are monolithic, in the sense that they commit to
using a fixed interaction protocol throughout task execution, e.g.,
confirm-request for synchronization [4]. Finally, while previous
work in robotics have begun to explore the use of task-allocation
in robot teams [3, 1], lessons from the application of multi-agent
techniques to robotics have not been generated.

This extended abstract briefly presents BITE (Bar Ilan Team-
work Engine), a novel behavior-based teamwork architecture tar-
geting physical robot applications, and addressing the open chal-
lenges discussed above. Similarly to previous architectures ([4, 5]),

�

Also affiliated with Carnegie Mellon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Figure 1: Robots using BITE to move in formation.

BITE maintains an organization hierarchy and a task/sub-task be-
havior graph to manage teamwork. However, in addition, BITE
maintains a novel third structure, a set of hierarchically linked so-
cial interaction behaviors implementing interaction protocols for
synchronization and task allocation. The key idea in this separa-
tion of the interaction behavior from the architecture is to make
team control flexible.

Indeed, BITE implements a teamwork micro-kernel approach,
in which different synchronization and allocation protocols can be
used interchangeably and mixed as needed. This allows BITE to
integrate and synthesize many features of existing teamwork archi-
tectures, and offer novel features. In addition, BITE incorporates
features that stem from lessons learned in applying multi-agent sys-
tems technique in physical robots. In particular, BITE emphasizes
pre-processing of sensory information before usage (including fu-
sion of information from multiple robots), and facilities for human
operator control.

BITE has been fully implemented and used with teams of Sony
AIBO platforms (Figure 1). Extensive experiments with BITE has
shown that BITE’s novel separation of social interaction from task-
oriented control is a significant contribution, in the sense that it ac-
counts for non-trivial effects on team performance. We additionally
discuss lessons learned in applying multi-agent systems techniques
to robots. Full details are available in [2]

2. BITE: STRUCTURES AND CONTROL
Given the popularity of behavior-based control in existing

robotics work, BITE uses a hierarchical task behavior-graph as the
basis for a representation underlying the controllers for the team
members. To this, it adds two additional structures: a set of social
interaction behaviors, and an associated organization-hierarchy.

The task behavior-graph specifies the sequential and hierarchi-
cal relationships between task-oriented behaviors. It is an aug-
mented connected graph, in which task-oriented behaviors are ver-
tices, and edges are of two types: Sequential edges that specify

1355



temporal order of execution of behaviors; and task-decomposition
edges, which allow a single higher-level behavior to be broken
down into execution chains containing multiple lower-level behav-
iors. As with previous teamwork architectures, each robot executes
its own copy of the behavior graph. Behaviors whose execution is
to be coordinated in some fashion (henceforth, team behaviors) are
tagged in advance by the designer.

BITE automatically takes actions to select and de-select team-
behaviors in different robots, when appropriate. When a choice is
available as to what team-behavior is to be executed next, BITE’s
synchronization services are triggered. Similarly, when a choice
as to which decomposition behavior should be selected (i.e., which
sub-task to execute), BITE triggers is task-allocation services, to
make sure that the selection of a sub-task is coordinated with the
tasks allocated to other robots. Finally, when a team-behavior’s
termination conditions are satisfied for a robot, BITE is triggered
to coordinate the termination of this behavior with the other robots.

BITE therefore needs to maintain knowledge about the robots
that are responsible for coordinated execution of team behaviors.
To do this, BITE maintains a second structure, the organization
hierarchy (called the team hierarchy in [4, 5]). This is a DAG
(Directed Acyclic Graph) whose vertices are associated with sub-
teams of agents, and whose edges signify sub-team-membership re-
lationships. Vertices correspond to multi-robot sub-teams of robots
and are connected such that if there exists an edge

���������	��

, then

� �	� � �
. The team hierarchy thus forms a partial lattice,

from the root team
�

which includes all team-members, to sub-
teams corresponding to each of the members by itself (i.e., to the
individuals in the organization).

To allow behaviors to reason about the organizational unit re-
sponsible for their execution, we create links between the behavior
graph and the team hierarchy, such that there is a link from a behav-
ior �� to a sub-team

�	�
if �� is to be executed by

�	�
. Similarly,

to allow reasoning about allocated tasks, we link sub-teams to the
behaviors they are responsible for, such that there’s a link from a
sub-team

�	�
to behavior(s) �� if

���
is responsible for �� . Us-

ing these links between the behavior graph and the team hierarchy,
a robot executing a behavior may easily find out whom it should
contact in order to coordinate execution of this behavior.

To carry out the interactions themselves, BITE maintains a novel
third structure, holding a set of social interaction behaviors which
control inter-agent interactions. Interaction behaviors execute the
synchronization and task allocation protocols (e.g., voting) that
govern coordinated activity. Each interaction behavior is encoded
in a separate behavior graph. For instance, a simple interaction be-
havior implementing voting synchronization may be decomposed
into four atomic interaction behaviors, executed in sequence: An-
nounce vote, send votes, tally votes, and announce winning selec-
tion. The addition of the social interaction behaviors, separate from
the task-oriented behavior graph, allows the use of different interac-
tion protocols at different times, depending on the team behaviors
in question (and other context information).

The main control loop for BITE’s behavior selection and exe-
cution uses a behavior stack—root behavior to leaf—where top
behaviors on the stack are executed simultaneously with their cur-
rently selected children. First, the root (initial) behavior is put on
an execution stack. Then the algorithm loops over four phases in
order: (i) It recursively decomposes the top behavior on the stack
into its children, allocating them to sub-teams if necessary (by call-
ing an allocation social behavior). (ii) It then executes the behavior
stack in parallel, waiting for the first behavior to announce termina-
tion. All descendants of a terminating behavior are popped off the
stack, and then (iii) synchronized termination takes place. This can

result in a newly-allocated behavior within the current parent con-
text, in which case, it will be put on the stack for decomposition.
Otherwise, (iv) this indicates that the robot should select between
enabled sequential transitions from the terminated behavior (typi-
cally, calling a synchronization social behavior in the process). The
process then repeats.

3. LESSONS LEARNED
BITE’s design, including its introduction of social interactions

as first-class objects, incorporates several lessons learned in using
multi-agent techniques in multi-robot systems.
Lesson: Flexibility Makes a Difference. BITE allows for a signif-
icant degree of flexibility in teamwork over existing architectures.
For instance, it allows creation of systems that marry the capabil-
ities of different architectures. It also allows different interactions
to be used depending on context. The robots, running BITE, have
been in used in several tasks. In experiments (reported elsewhere
[2]) we show that the ability to mix and match interaction behaviors
can be a significant factor in task performance, lending support to
this novel feature being an important contribution.
Lesson: Automated Teamwork Saves. By implementing the be-
haviors in BITE, the burden of worrying about coordination is put
on the robots. For instance, in a coordinated movement task (move-
ment in formation) when one robot loses track of the lead robot,
the appropriate termination condition is satisfied, and the behavior
terminates. This in turn triggers the appropriate social interaction
behavior in BITE, which causes the other robots to also stop exe-
cuting their movement behavior. Thus the team automatically starts
and stops its movement together.
Lesson: Fuse and Process Sensor Information. A key lesson
we have learned touches on the inherent unreliability of sensing
in physical robots, compared to software agents. Teamwork ar-
chitectures for software agents typically do not need to reason
about whether their perceptions are truthful, only whether they have
sensed all that they need to. This is most definitely not true in phys-
ical domains, were sensors may not only fail to detect a feature, but
may simply lie about it. To address this, BITE pre-processes sensor
data before it is handed off to task and interaction behaviors. It also
facilitates fuses information from multiple robots, to mitigate both
incorrectness as well as incompleteness.
Future efforts. We will focus on human-team interactions, and on
extending BITE’s capabilities towards greater fault-tolerance. We
also plan to investigate the use of BITE in multiple robotic plat-
forms, and a variety of tasks.
Acknowledgments. This research was supported in part by BSF
grant 2002401.
4. REFERENCES
[1] M. B. Dias and A. T. Stentz. A free market architecture for

distributed control of a multirobot system. In Proceedings of
the International Conference on Intelligent Autonomous
Systems (IAS-6), 2000.

[2] G. A. Kaminka and I. Frenkel. Flexible teamwork in
behavior-based robots. In AAAI-05, 2005.

[3] L. E. Parker. ALLIANCE: An architecture for fault tolerant
multirobot cooperation. IEEE Transactions on Robotics and
Automation, 14(2):220–240, April 1998.

[4] D. V. Pynadath and M. Tambe. Automated teamwork among
heterogeneous software agents and humans. JAAMAS,
7:71–100, 2003.

[5] T. D. Vu, J. Go, G. A. Kaminka, M. M. Veloso, and
B. Browning. MONAD: A flexible architecture for
multi-agent control. In AAMAS-03, 2003.

1356




