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1. INTRODUCTION

In the context of unknown environments, this paper deals
with autonomous robots navigation for exploration and for-
aging tasks. This remains a hard problem when the envi-
ronment contains complex obstacles (dead ends, mazes,..).
Artificial Potential Fields (APF) is a well known approach to
deal with navigation of autonomous agents. They are com-
puted to define attractive forces towards goals and repul-
sives ones from obstacles. However, the APF approach has
a critical drawback: the possible existence of local minima
[1] (e.g. positions where the different forces equalize). The
only solution to avoid this drawback is to know/perceive the
whole environment [2]. As a consequence, the solution for
autonomous agents equiped with limited perception consists
in marking the environment in order to use it as a shared
memory. This approach, inspired by pheromones mecha-
nisms in ant colonnies, provides good solutions but requires
a lot of agents and time for their emergence.

If robots have a representation of the whole environment,
it is possible to use optimal planning algorithms to obtain
the shortest path from a position to another. One of these
algorithms [2] is reexamined in this paper for two reasons.
Firstly, it quickly computes optimal paths. Secondly, its
incremental principle allows to translate it in a multiagent
system that does not require the assumption of the whole
environment representation. The algorithm [2] is based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

) FBEBREEEE
[ 4 1| F 4
1112|112 3 11111 El 3
IR EEREEERE N LEEENERE

1 3 1q: B = - EN
i 1 3 A RE K HEE
o BB EEE HEHEEEHE

a b c

Figure 1: Collective construction of the potential
field with 3 agents (steps 2, 17 and 65)

the precomputation of a numerical potential field ex-
panding from the goal of the agent. Then, an agent can
reach its goal by performing a simple gradient descent. This
paper demonstrates how this precomputation can be trans-
lated into a mark based process involving reactive agents
and how it can be efficiently applied to foraging tasks.

2. WAVEFRONT COMPUTATION WITH
REACTIVE AGENTS

Barraquand and colleagues proposed in 1991 a robot path
planning technique based on the precomputation of a nu-
merical potential field free of local minimum [2]. This
technique builds an APF incrementaly; the field increases
from the agent’s goal (lowest potential value) to all acces-
sible positions in the environment (namely the wavefront
expansion). It is an application of the classical Distributed
Bellman-Ford (DBF) algorithm, which computes the lowest
cost path between two vertex in a graph. The interest of
computing the wavefront expansion is that an agent, placed
in this potential field, has just to follow the negated gradient
to reach the goal by the shortest path. The key idea of the
paper is to build such potential fields thanks to the actions
of reactive agents that do not know the environment.
For this purpose, numerical potential fields values are de-
fined as simple marks that agents can deposit or update.
The environment is assumed to be discretized in regular
cells. Each agent is located in a cell. An agent can move
and perceive the 4-neighbors cells. The marks defined here
are simple integer values. Contrary to pheromones, this ap-
proach does not require diffusion and evaporation mecha-
nisms. Agents can only read or write one value per cell.
These simple abilities allow the agents to explore the envi-
ronment and mark it at the same time. Before launching
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Figure 2: Resolution of a foraging problem with 10
Marker-trail-agents (step 27).

agents, the 0 value is written on the goal/home cell and all
the agents are placed on or close to it.

The wavefront potential is collectively and incrementaly built
around the initial value by the actions of all agents. Each
agent repeatedly performs the behavior presented in Al-
gorithm 1. For any displacement an agent computes the
UPDATE-VALUE operation (Algorithm 2). This operation
corresponds to a local expansion from an existing wavefront
to a not yet visited cell: the shortest path from this new
cell equals 1 (one move) + the shortest neighbor path to the
goal.

Algorithm 1 Exploration & Potential construction

IF there exists neighbor cells without a value THEN move
randomly towards one of them and UPDATE-VALUE
ELSE move randomly towards one of the cells which are
not an obstacle and UPDATE-VALUE

Algorithm 2 UPDATE-VALUE Operation

Computes val = 1 + min (4-neighbor values)
IF no value in the current cell or val < valcyrrent
THEN (update) write val

One advantage of using marks is to improve a simple ex-
ploration which is based on random motions. Indeed agents
move by favoring the not yet marked cells (first line algo-
rithm 1). As a consequence their exploration progresses as
a (partial) circular front around the starting cell. Figure 1.a
shows such a progression with 3 agents.

It is important to notice that cells may need to be explored
several times before building the optimal potential field. In-
deed, the number of agents will not be generally sufficient to
hold an entire circular front progresion. So, one exploration
step (each agent moves) is not equivalent to a loop of the
DBF algorithm. Figure 1.b shows such a situation (cell with
value 13). However, if the environment is bounded the time
necessary to obtain the complete optimal potential field is
also bounded, i.e. the construction converges (fig. 1.c). The
proof relies upon the hypothesis that each cell may be visited
infinitely often. Then the update operation can propagate

the best paths to all the cells. The random exploration of
agents (algorithm 1) ensures this assumption.

3. APPLICATION TO FORAGING

In the foraging task, known as the explorer robots prob-
lem, a set of simple mobile robots have to collect rock sam-
ples in an unknown environment [3]. So the potential field
construction presented above is well adapted to treat such a
problem. The potential field is built during the exploration
of the environment and provides very efficient paths to re-
enter the base. In particular these paths avoid any obstacle
shapes (see fig. 2, obstacles are in grey color). If the ex-
plored area is limited these paths tend to be optimal (see
previous section).

In order to allow agents to find again a discovered source,
and to communicate such an information to others, the
model is extended. These abilities are easily obtained by
adding a simple environment-based behavior. When follow-
ing the negated gradient from a source to the base the agent
leaves a trail, by coloring the visited cells, in order to mark
this particular path. Thus, any agent can detect such trails
and follow them by a climbing behavior (trails are in dark
grey color in fig. 2). As the sources can be worked out, it
is necessary to add a behavior to remove the useless trails.
It is done by a simple trail descent where the agent changes
the cells color into the default one.

This model, namely Marker-trail-agents, is very efficent to
treat discovered sources and allows a strong cooperation be-
tween agents. Numerous simulations have been fulfilled and
show that the time for a complete foraging decreases dra-
matically while the number of agents increases. Figure 2
shows a snapshot of one of these simulations. The potential
field is partially built and two trails connect sources to the
base. Several agents, represented by circles, simultaneously
move along these paths (note that agents can climb a trail
while it is not yet connected to the base). Trails are used as
a mean of communication. Indeed any agent in exploration
which meets such a trail goes directly to a source.
Contrary to pheromone based techniques, the proposed ap-
proach does not require time for the emergence of routes
from discovered sources to home and for removing them.
Moreover, it requires the construction of only one gradient.
As a consequence, the number of agents needed for the for-
aging task is less important than with a swarm approach.

This multiagent model is now being applied to the con-
struction of other artificial potential fields. Moreover, new
extensions are analysed through variants of the foraging
problem.
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