Adaptive A*

F
Sven Koenig
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

ABSTRACT

Agents often have to perform repeated on-line searches as
they gain additional knowledge about their environment.
We describe an incremental version of A*, called Adaptive
A*, that solves series of similar search problems faster than
running A* repeatedly from scratch because it updates its
heuristics between search episodes. It is simpler than other
incremental versions of A* and thus likely easier to extend
and adapt to new applications.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: Problem Solving, Control Meth-

ods, and Search—Graph and tree search strategies

General Terms
Algorithms

Keywords

A* D* Lite, Heuristic Search, Incremental Search, Planning
with the Freespace Assumption

1. INTRODUCTION

Assume that one has to perform several A* searches with
consistent heuristics in the same state space and with the
same goal states but possibly different start states. Our idea
is to make the heuristics more informed after each A* search
in order to speed up future A* searches. Assume that s is a
state that was expanded during such an A* search. One can
obtain an admissible estimate of the goal distance of state
s as follows: The distance from the start state to any goal

*This research has been supported in part by an NSF award
to Sven Koenig under contract 11S-0350584. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of NSF or the U.S.
government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Maxim Likhachev
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891

maxim+@cs.cmu.edu

state via state s is equal to the distance from the start state
to state s plus the goal distance of state s. It is no smaller
than the goal distance of the start state. Thus, the goal dis-
tance of state s is no smaller than the goal distance of the
start state (= the f-value of the goal state that was about to
be expanded when the A* search terminates) minus the dis-
tance from the start state to state s (= the g-value of state s
when the A* search terminates). Consequently, this differ-
ence provides an admissible estimate of the goal distance of
state s and can be calculated quickly. Our Adaptive A* ob-
tains more informed heuristics by calculating and assigning
this difference to each state that was expanded during the
A* search and thus is in the closed list when the A* search
terminates. (The states in the open list are not updated
since the distance from the start state to these states can be
smaller than their g-values when the A* search terminates.)
Adaptive A* is simpler than other incremental versions of
A* such as D* Lite [1], and thus likely easier to extend and
adapt to new applications.

2. ADAPTIVE A*

The task of Adaptive A* is to repeatedly find cost-minimal
paths to a given set of goal states in a given state space
with positive action costs. The searches can differ in their
start states. Also, the action costs of an arbitrary number of
actions can increase between searches by arbitrary amounts.
Adaptive A* uses informed h-values to focus its searches.
The initial h-values are provided by the user and must be
consistent for the initial action costs. Adaptive A* updates
its h-values after each search to make them more informed
and focus its searches even better. An iteration of Adaptive
A* proceeds as follows: It first updates the action costs, if
necessary, to reflect any increases in action costs. It then
picks a start state and runs a forward A* search to find a
cost-minimal path from the start state to any state in the
given set of goal states. Assume that the search determined
that the cost of the cost-minimal path is g* Let CLOSED
be the set of states that were expanded during the search.
Then, Adaptive A* executes h[s] := g* — g[s] for all states
s € CLOSED, where g[s] is the g-value and h[s] is the
h-value of state s after the search. It then starts a new
iteration. One can prove that the h-values of the same state
are monotonically nondecreasing over time and thus indeed
become more informed. One can also prove that the h-values
remain consistent and Adaptive A* thus continues to find
cost-minimal paths over time without having to re-expand
states during the same search.

1311

2 9[3 9[4 9[5 9
8 7 6 5 4 8 7 6 5 4
4 10[5 10[6 10[7 10} J2 o[t 7|2 7[3 7]4 7
7 6 5 4 3 7 6|5 4 3
4 10]3 8l4 8[5 8[6 8 170‘5 4 7|57
6 s[|4 3 2 6 |5 3 2
3 8(2]6 6 8l7(8]]2 7[1 5 7 96|17
5 4 2 1 5 4 2 1
2 6[1]4fo 2 sys| |3 7|2 5[3 5 7y7
4 3 2 0 4 |3 2 0

Figure 1: Forward A* Searches

2 9]3 9|4 9]5 9
8 |7 |6 |5 |4 8 |7 |6 |5 |4
4 10[5 10[6 10[7 10| [2 o1 7[2 7[3 7[4 7
7 6 |s |4 |3 7 |6[6]5 5|4 4[3]3
4 10[3 84 8[5 8[6 8 170‘5 4 105[7
6 [s5[s|a a3 3]2]2] |6 6[5®7 3 |22
3 8[2]6 6 sl7|8] |2 7|1 7 7 967
5 5(4|6 2 |i|1]]s s|e s 2 |1t
2 6[1]4]o2 sys| |3 of2 o RE
4 6[3 7[2%8 0 6 |7 |8 0

Figure 2: Adaptive A*

3. AN APPLICATION

Consider characters in real-time computer games such as
Total Annihilation or Warcraft. These real-time situated
agents often do not know the terrain in advance but auto-
matically observe it within a certain range around them and
then remember it for future use. To make the agents easy
to control, the users can click on some position in known or
unknown terrain and the agents then move autonomously
to this position. We discretize the terrain into cells that
are either blocked or unblocked and assume for simplicity
that the agents can only move in the four main compass
directions with unit action costs and thus operate on four-
connected grids. As heuristic estimate of the distance of two
cells we use the consistent Manhattan distance. The agents
initially do not know which cells are blocked. They always
know which (unblocked) cells they are in, sense the blockage
status of their four neighboring cells, and can then move to
any one of the unblocked neighboring cells. Their task is to
move to a given goal cell. Our agents use planning with the
freespace assumption [2] to solve the task. They find and
then follow a cost-minimal presumed unblocked path from
their current cell to the given goal cell, where a presumed
unblocked path is one that does not pass through cells that
are known to be blocked. Whenever the agents observe ad-
ditional blocked cells during execution, they add them to
their map. If such cells block their current path, they find
and follow another cost-minimal presumed unblocked path
from their current cell to the given goal cell, and repeat the
process until they either reach the given goal cell or all paths
to it are blocked. Figure 1 shows the resulting A* searches
and Figure 2 shows the resulting Adaptive A* searches for
a simple navigation example. The black circle is the agent.
Black cells have been observed as blocked. The arrows show
the planned paths from the current cell of the agent to its
goal cell, which is in the lower right corner. All search meth-
ods break ties between cells with the same f-values in favor
of cells with larger g-values and remaining ties in the fol-
lowing order, from highest to lowest priority: right, down,
left and up. All cells have their h-value in the lower left
corner. Generated cells also have their g-value in the upper
left corner and their f-value in the upper right corner. Ex-
panded cells are shown in grey. For Adaptive A*, expanded

Expanded Cells Planning Time (usec)

w (o of p) Iz (o of p)
A* with Binary Heap
53,084.27 (1,229.42) | 16,514.75 (357.13)

Adaptive A* with Binary Heap

41,593.55 (735.96) | 14,355.81 (262.40)
D* Lite with Binary Heap

11,416.37 (116.94) | 8,505.72 (88.01)
Adaptive A*¥ with Buckets

41,063.69 (541.11) | 7,051.12 (96.86)

Table 1: Experiments in Random Mazes

cells have their updated h-values in the lower right corner.
Note that A* re-expands the three cells in the bottom row
because the h-values are misleading. Adaptive A* avoids
these re-expansions since it updates the h-values.

4. EXPERIMENTAL RESULTS

We performed experiments in randomly generated four-
connected mazes of size 201 x 201 that were solvable. We
generated their random corridor structure with a depth-first
search and then removed 750 walls. We averaged over 5000
random mazes with randomly chosen start and goal cells
on a SUN workstation with an AMD Opteron Processor
150 with 1 GByte of RAM. We compared A* against two
incremental versions of A* namely Adaptive A* and the
optimized final version of D* Lite as published in [1]. All
three search methods used standard binary heaps as priority
queues and broke ties between cells with the same f-values
in favor of cells with larger g-values and remaining ties ran-
domly. They are guaranteed to determine the same paths
(module tie breaking), which are on average 931.64 moves
long. Table 1 shows both the average number of expanded
cells and the average planning time until the agent reached
the goal cell as well as the standard deviation of the mean (to
show statistical significance). Adaptive A* expanded more
than 20 percent fewer cells than A* but needed about 10
percent more time per cell expansion. Overall, Adaptive A*
ran more than 10 percent faster than A*. (Note, however,
that the planning times of all three search methods are im-
plementation, compiler, and computer dependent.) D* Lite
was even faster than Adaptive A* despite its large time per
cell expansion. However, Adaptive A* can be made more
efficient. For example, it can update the h-values incremen-
tally when it encounters them during a future search rather
than all at once after the current search. This modification
can speed it up if it expands a large number of states during
its current A* search that it is not going to encounter during
future A* searches but does not make it faster in our mazes.
Adaptive A* can also incorporate most of the methods used
to speed up A*. For example, it can use buckets as priority
queue instead of a binary heap. Buckets speed up Adaptive
A* substantially in our mazes (more than A* since A* is
more susceptible to the loss of secondary tie breaking than
Adaptive A*) and makes it faster than D* Lite, that cur-
rently cannot be sped up in the same way. Of course, the
results might be different in different domains.

ﬁ} S.%éEgEaRnEM.EEhSaCheV‘ D* Lite. In Proceedings of the

National Conference on Artificial Intelligence, pages
476-483, 2002.

[2] S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds
for planning in unknown terrain. Artificial Intelligence,
147:253-279, 2003.

1312

