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ABSTRACT
Many different multi-agent problems, such as distributed
scheduling, can be formalized as distributed constraint op-
timization problems (DCOP [1]). Ordering the constraint
variables is an important preprocessing step of the ADOPT
algorithm [1], the state of the art method of solving DCOP.
Currently ADOPT uses depth-first search (DFS) trees for
that purpose. For certain classes of tasks DFS ordering does
not exploit the problem structure as compared to pseudo-
tree ordering [3]. Also the variables are currently ordered
by using a centralized scheme, which requires global infor-
mation about the problem structure.

We present a variable ordering algorithm, which is both
decentralized and makes use of pseudo-trees, thus exploit-
ing the problem structure when possible. This allows to
apply ADOPT to domains, where global information is un-
available, and find solutions more efficiently. The worst-case
pseudo-tree depth resulting from our algorithm is

p
2k|V |,

where V is the set of variables, and k is maximum cluster
size in constraint graph. The algorithm has space and time
complexity polynomial in size of the constraint graph.
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1. INTRODUCTION
The Distributed Constraint Optimization Problem [1] is

increasingly used as an underlying framework for modelling
agents coordination problems. Applications of DCOP in-
clude sensor networks and distributed scheduling.
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DCOP consists of variables, each having its own discrete
finite domain. Every variable’s value is controlled by exactly
one agent. The agents must coordinate in order to minimize
the global cost function, which depends on the variables.
The cost function is modeled as a set of valued constraints,
and every agent has knowledge only about the constraints
depending on its variable. The connectivity between the
agents can be represented in form of a constraint graph.
The vertices of the graph are agents, and two agents have
an edge between them, iff they share a constraint.

Recently an algorithm for solving DCOP, ADOPT [1] was
proposed. It performs a systematic backtracking with agents
acting asynchronously. To achieve that, the agents are or-
dered a priori in a tree such that the agents in different
branches of the tree do not share any constraints. ADOPT
itself does not address the process of ordering and regards it
as a preprocessing step. Currently a centralized algorithm
that performs depth-first traversal of the constraint graph, is
used for that purpose. It is known [1] that the performance
of the algorithm crucially depends on the variable ordering,
thus making important the task of constructing the tree.

It is hard to find an optimal tree for ADOPT without ac-
tually solving the DCOP, but the depth of the tree is one
possible approximation of the optimality criterion. Finding
the minimum depth DFS tree of the graph is NP-complete
task, so different heuristics are employed to obtain an ap-
proximate solution. Distributed algorithm for constructing
DFS trees can be found in [2].

For certain classes of tasks restricting the possible or-
derings to DFS trees can have strong negative impact on
ADOPT performance as compared to pseudo-trees [3]. The
centralized iterative algorithm for constructing pseudo-trees
was presented in [3]. It was shown for certain classes of
CSP to yield better performance of the backtracking algo-
rithm than DFS trees. Because of the similarity of CSP and
DCOP algorithms, one can expect similar results for DCOP.

The centralized variable ordering algorithm does not allow
to apply ADOPT to domains in which information about
the constraint graph cannot be gathered and processed by
a single unit.

In this paper we present an algorithm which is both de-
centralized and makes use of pseudo-trees. It enables one
to solve DCOP problems without having to process any
global information, and increases the efficiency of the solu-
tion search if the problem structure allows it. Our algorithm
is a decentralized modification of the general iterative algo-
rithm from [3]. It takes into account both the depth of the
resulting pseudo-tree, and the maximum message travel time
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Figure 1: Algorithm for agent xi in the acyclic case
1: d = computeDepth(xi);

2: while ¬ (∀xj ∈ (Ni \ ancestors) d < depth(xj))

3: a = receiveAncestorInfo();

4: append a to ancestors;

5: d = computeDepth(xi);

6: end;

7: broadcastAncestorInfo();

8: removeFromGraph(xi);

from root to leaves given the local communication assump-
tions. It yields an optimal pseudo-tree in terms of message
travel time for acyclic graphs and performs no worse than
DFS traversal for general graphs.

Because of lack of space, only a brief outline of the algo-
rithm and its properties is presented, please refer to [4] for
formal proofs and definitions.

2. THE ALGORITHM

2.1 Acyclic case
Suppose that the constraint graph X =< V, E > is acyclic.

Let Ni be the set of neighbors of variable xi. Each agent
executes the algorithm outlined in Fig. 1.

Function computeDepth(xi) on lines 1:, 5: computes the
maximum length of a simple route starting in node xi in the
graph, according to

depth(xi) = maxxj∈Ni partialDepth(xi , xj)
partialDepth(xi , xj) =

max{0, maxxk∈(Nj\xi)(1 + partialDepth(xj , xk))

The values of depth() and partialDepth() are announced
by a node to its neighbors as soon as they are known. The
process begins with leaves announcing partialDepth() = 0

to their respective single neighbors.
On each iteration the node with minimal depth becomes

the ancestor of all remaining nodes. Then it is removed
from the graph, splitting it into several separate connected
subgraphs. The process is then repeated iteratively for each
of the connected subgraphs. We have proved that locally
minimal depth value is also globally minimal and ties are
possible only between neighbors, so it is enough to compare
depth(xi) with its neighbors to decide whether xi is the node
with minimum depth.

2.2 Limited-cluster case

Def. 1. Agents xi, xj belong to the same cluster iff ∃ sim-
ple cycle in the constraint graph, containing both xi and xj.

Space restrictions do not allow to give details of the algo-
rithm in this general case. It is similar to the acyclic case,
with clusters acting as meta-nodes in the constraint tree.
Within the clusters the agents are ordered in a DFS tree.

2.3 Complexity and results quality
Denote k the maximum cluster size. Memory complexity

of the algorithm for agent i is O(|Ni| + log |V |) for acyclic
case and O(k|V |) in limited-cluster case. Time complexity

is O(|V |) cycles for acyclic case and O(|V | + |E| + k
3
2 |V |

1
2 )

for limited cluster case. The worst-case pseudo-tree depth
resulting from the presented algorithm is

p
2k|V |.

Figure 2: ADOPT performance using DFS and
pseudotree orderings. Acyclic constraint graphs
(top row) and limited-cluster case (bottom row)
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3. EVALUATION
We provide a comparison of the performance of ADOPT

algorithm using DFS and pseudotree ordering of the vari-
ables (Fig. 2). Experiments with ADOPT were performed
using agents running on 3 networked computers. Branching
factor of the constraint tree (meta-tree in case of limited-
cluster graphs) and average constraint density (fraction of
the variables assignments that cause constraint violation)
were varied. One can conclude that while neither ordering
method dominates another for all types of problem struc-
ture, pseudotree ordering results in much faster DCOP so-
lutions for problems with low constraint density. The actual
ordering time for these problems was < 2 sec. and varied lit-
tle across the problems. Most of the computation was spent
on KQML messages parsing.

4. CONCLUSION
We have presented a new algorithm for variable order-

ing, which allows to eliminate the need to process global
information when solving a DCOP. It also increases the so-
lution search efficiency by exploiting the problem structure
when possible. This extends the class of problems for which
employing ADOPT is feasible and allows to apply it to com-
pletely decenralized problems. The algorithm has provable
theoretical guarantee on the resulting ordering depth and
polynomial time and space complexity.
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