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ABSTRACT
In multi-agent systems where sets of joint actions (JAs) are gener-
ated, metrics are needed to evaluate these sets and efficiently allo-
cate resources for the many JAs. For the case where a JA set can
be represented by multiple solutions to a DCOP, we introducek-
optimality as a metric that captures desirable properties of diversity
and relative quality, and apply results from coding theory to obtain
upper bounds on cardinalities ofk-optimal JA sets. These bounds
can help choose the appropriate level ofk-optimality for settings
with fixed resources and help determine appropriate resource allo-
cation for settings where a fixed level ofk-optimality is desired.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence;
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search

General Terms
Design, Theory

Keywords
constraint reasoning, DCOP, multiagent systems, k-optimality

1. INTRODUCTION
We consider a cooperative multi-agent system that generates a

set of joint actions (JAs). The outcome for a single JA, a com-
bination of individual actions, can be captured by a DCOP [2], a
model which decomposes the system into a fixed interaction and
reward structure. Motivating domains include a team of troops that
generate many sorties which consume supplies or a team of rescue
units that generate many potential plans (for a disaster rescue com-
mander) which consume human decision time. JA sets can be (i)
a sequence of JAs to execute or (ii) a set of choices, but in either
case, they consume resources as a function of set size.
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Most work in DCOPs and similar methods generates a single JA
with high absolute reward, but reward alone is a poor metric for
domains with JA sets, as it often yields clustered solutions. Clus-
tering is undesirable, as diversity (the difference among JAs) is of-
ten a key property for evaluating JA sets, e.g., commanders want
varied options, not tiny perturbations of essentially the same op-
tion. However, diversity alone is undesirable, as we want to ensure
a level of relative quality (each JA is best among a group of sim-
ilar JAs and cannot be improved by simple changes). To do this,
we define a metric,k-optimality, that naturally captures diversity
and relative quality: ak-optimal JA has the highest reward within
a neighborhood of JAs differing from it by at mostk individual
actions;k-optimality quantifies the neighborhood in which a local
optimum is optimal. Ak-optimal JA set (a collection ofk-optimal
JAs) then guarantees a level of relative quality (each JA is better
than all JAs in a neighborhood of radiusk) and diversity (JAs in the
set must be separated by at leastk individual actions).

Because each JA may consume resources, and the number of
generated JAs may not be knowna priori, resource allocation is a
critical problem. Unfortunately, we cannot predict this number be-
cause the exact rewards in our domains are not known in advance.
For example, supplies need to be allocated to troops executing mul-
tiple sorties before exact numbers and locations of adversaries are
known. However, reward-independent upper bounds can be ob-
tained on the size ofk-optimal JA sets (i.e. to safely allocate enough
supplies) by applying results from coding theory.

These bounds are useful in two ways: (i) If a particular level
of k-optimality is desired, bounds indicate the maximum resource
requirement for anyk-optimal JA set. Thus, bounds provide a safe
number of resources that can be allocateda priori to ensure enough
for all k-optimal JAs. (ii) If resource availability is fixed, bounds
help us identify instances where resources are guaranteed to be
wasted. Because fewerk-optimal JAs can exist ask increases, if the
resource level is above the bound onk-optimal JAs for the chosen
k, then the resources above the bound are guaranteed to go unused.

2. k-OPTIMALITY
We introduce the notion of ak-optimal joint actionas a metric

that captures both relative quality and diversity when selecting JA
sets. The fitness ofk-optimality for evaluating JA sets is illustrated
in Figure 1, which shows a deployment of troops where each unit
can advance or hold. Decision-support agents (assigned to each
unit) coordinate to generate multiple sortie plans to be executed.
Using reward alone as a metric to generate a JA set leads to a clus-
ter of near-identical solutions (essentially, all troops hold). Using
diversity alone (ensuring all JAs differ by more than two actions)
leads to a JA set where many JAs can be improved with deviations
of only two agents (shown by the arrows). Withk-optimality (k=2),
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Figure 1: Generating JA sets under various metrics
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Figure 2: DCOP example

we generate a set of diverse JAs (all troops hold; front advances,
rear holds; front holds, rear advances; all advance) where no JA
can be improved with a two-agent deviation.

To definek-optimality more formally, we begin with our model
of the multi-agent team problem. For a set of agentsI := {1, . . . , I },
the i th agent takes actionai ∈ Ai . We denote the joint action
of a subgroup of agentsS ⊂ I by aS := ×i∈Sai ∈ AS where
AS :=

�
i∈SAi and the joint actions (JAs) of the entire multi-

agent team bya = [a1 · · · aI ] ∈ A whereA :=
�

i∈IAi . The
team reward for taking a particular JA,a, is an aggregation of the
rewards obtained by subgroups in the team:R(a) =

∑
S∈S RS(a) =∑

S∈S RS(aS) whereS is a minimal subgroup that generates a re-
ward (or incurs a cost) in an n-ary DCOP or cost network (i.e. a
constraint),S is the collection of all such minimal subgroups for
a given problem andRS(·) denotes a function that mapsAS to �.
By minimality, we mean that the reward componentRS cannot be
decomposed further:∀S ∈ S, RS(aS) , R1

S1
(aS1)+R2

S2
(aS2) for any

R1
S1

(·) : AS1 → �, R2
S2

(·) : AS2 → �, S1,S2 ⊂ I s.t. S1 ∪ S2 = S,
S1,S2 , ∅. It is important to express the team reward in minimal
form to accurately represent the dependencies and independencies
among agents. Thus,S ⊆ P(I) (whereP(·) denotes the power set)
captures these local interactions.

To evaluate JA sets, specifically JAs with respect to each other,
we need notions of neighborhood and distance among JAs. For two
JAs,a andã, we define the following terms. Thedeviating groupis
D(a, ã) := {i ∈ I : ai , ãi}, the set of agents whose individual ac-
tions differ. Thedistanceis d(a, ã) := |D(a, ã)|where| · | denotes the
cardinality of the set. Therelative rewardis∆(a, ã) := R(a)−R(ã) =∑

S∈S:S∩D(a,ã),∅ [R(aS) − R(ãS)] . Given the above, we can now clas-
sify a as ak-optimal joint actionif ∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k.
Every JA can be given ak, identifying the size of the neighborhood
where it is locally optimal. A collection ofk-optimal JAs will be
mutually separated by a distance greater thank as they each have
the highest reward within a radius ofk. Thus, a higherk-optimality
of a collection implies a greater level of relative reward and diver-
sity. Let Ak = {a ∈ A : ∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k} be the set
of all k-optimal JAs. It is straightforward to showAk+1 ⊆ Ak.

E 1. Figure 2 is a binary DCOP in which agents choose
actions from{0,1}, with rewards shown for the two constraints
(minimal subgroups)S = {{1,2}, {2,3}}. The JA a= [1 1 1] is
1-optimal because any single agent who deviates reduces the team
reward. However,[1 1 1] is not2-optimal because if the group{2,3}
deviated, making the JÃa = [1 0 0], team reward would increase

Figure 3: βHS P for all k for systems of up to 10 agents

from 16 to 20. The optimal JA, a∗ = [0 0 0] is k-optimal for all
k ∈ {0,1,2,3}.�

3. BOUNDS ONk-OPTIMA
Bounds on|Ak| can help allocate resources when a particular

level of k-optimality is desired, and can help identify guaranteed
resource waste in fixed-resource settings. To find upper bounds on
the number ofk-optimal JAs, we discovered a correspondence to
coding theory [1]. We assume every subgroupG has a unique opti-
mal (subgroup) joint actiona∗G for any contextaGC (if G ⊂ I where
G , ∅ andG , I, then∃ a∗G ∈ AG s.t. R(a∗G; aGC ) > R(aG; aGC )
for all aG , a∗G; GC denotes the complement of setG). Finding
the maximum possible number ofk-optimal JAs can be mapped
to finding the maximum number of codewords in a space ofqI

words where the minimum distance between any two codewords
is d = k+ 1. We can map words to JAs and codewords tok-optimal
JAs as follows: A joint actiona taken byI agents each with an ac-
tion space of cardinalityq is analogous to a word of lengthI from
an alphabet of cardinalityq. The distanced(a, ã) can then be in-
terpreted as a Hamming distance between two words. Then, ifa is
k-optimal, andd(a, ã) ≤ k, thenã cannot also bek-optimal because
that implies the subgroupD(a, ã) has two optimal (subgroup) joint
actions to the contextD(a, ã)C, violating our assumption. Thus, any
two k-optimal JAs must be separated by distance greater thank.

Three well-known bounds on codewords are Hamming1: βH =

qI/
(∑bk/2c

n=0

(
I
n

)
(q− 1)n

)
, Singleton:βS = qI−k, and Plotkin2: βP =⌊

k+1
k+1−(1−q−1)I

⌋
[1]. Thus, |Ak|, the number ofk-optimal JAs for a

given I andq, can be bounded byβHS P := min{βH , βS, βP}. For
example, to find a reward-independent bound on 1-optimal JAs for
3 agents withq = 2, (e.g., the system in Figure 2), we obtainβHS P=

4, without knowingR12 andR23 explicitly. If all 1-optimal JAs are
to be executed, each requiring a resource, then the agents must be
equipped with 4 resources to be safe. But, if they are equipped with
more, the extra resources are guaranteed to go unused. Figure 3
showsβHS P for all k for up to 10 agents, withq = 2.
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1For evenk. For oddk, with q = 2, βH(I , k,q) = βH(I − 1,q, k− 1)
can be used to obtain a tighter bound. [1]
2only valid when (1− 1/q)n < k+ 1
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