Attacking the Migration Bottleneck of Mobile Agents

Peter Braun
Swinburne University of Technology
Faculty of Information and Communication
Technologies
John St, Hawthorn, Victoria 3122, Australia

pbraun@ict.swin.edu.au

Ingo Maller
Swinburne University of Technology
Faculty of Information and Communication
Technologies
John St, Hawthorn, Victoria 3122, Australia

imueller@ict.swin.edu.au

ABSTRACT

Mobile agents were introduced as a design paradigm for dis-
tributed systems to reduce network traffic as compared to
client-server based approaches, simply by moving code close
to the data instead of moving large amount of data to the
client. Although this thesis has been proved in many appli-
cation scenarios, it was also shown that the performance of
mobile agents suffers from too simple migration strategies
in many other scenarios. In this paper we identify several
reasons for mobile agents’ poor performance, most of them
related to the Java programming language, and adumbrate
solutions to all of these problems.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Applications; C.2.4 [Distributed

Systems]: Distributed Applications

General Terms

Experimentation, Performance

Keywords

Mobile agents, migration protocols, migration optimization

1. INTRODUCTION

Mobile agents have been introduced as a design paradigm
for distributed applications. In this paper we solely focus
on the problem of performance of mobile agents. One major
argument in favor of mobile agents is code-shipping versus
data-shipping. In a client-server based application, a single
remote procedure call might result in a huge amount of data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1239

Steffen Kern
Friedrich Schiller University Jena
Department of Computer Science
Ernst-Abbe-Platz 2, 07743 Jena, Germany

steffen.kern@informatik.uni-jena.de

Ryszard Kowalczyk
Swinburne University of Technology
Faculty of Information and Communication
Technologies
John St, Hawthorn, Victoria 3122, Australia

rkowalczyk@ict.swin.edu.au

sent back to the client due to the lack of precision in the
request. Instead of transferring data to the client where it
will be processed and filtered and might cause a new request
(data-shipping), this code can be transferred to the location
of the data (code-shipping) by means of mobile agents. In
the latter case, only the relevant data, i.e. the results after
processing and filtering are sent back to the client.

This argument was examined by experiments in the last
years for different application domains [6, 7] and it was
shown that neither client/server nor mobile agents produce
minimal network load in all situations. It is obvious to see
that the code-shipping versus data-shipping argument is only
valid if, simply speaking, the mobile agent’s code that has
to be transmitted is not larger than the amount of data that
can be saved by the use of a mobile agent. It depends on
the size of the request, the size of the reply, the code size
and some other parameters to decide whether mobile agents
perform better than client-server approaches.

We propose to supplement a static design decision be-
tween both paradigms [5] with techniques to reduce the mi-
gration overhead of mobile agents by increasing the migra-
tion efficiency. The migration efficiency of a mobile agent
defines how many code units (on the level of statements,
methods, or classes) and data units (variables or objects)
of an agent are used (read or written) on remote agencies
proportional to the number of code units and data units
that have been transmitted. An agent has a low migration
efficiency, if many code units or data units have been trans-
mitted superfluously, i.e. they have not been used at remote
agencies. A migration efficiency greater than 1 can make
sense, since agents’ code can be deployed or be cached in
advance. It should be clear that the performance of a mo-
bile agent is directly influenced by the migration efficiency.

2. THE KALONG MOBILITY MODEL

When a mobile agent decides to migrate to another host,
the underlying agency is responsible to stop agent execu-
tion, serialize the agent, and to transfer the agent’s state to
the destination agency. The destination agency receives and
deserializes the agent’s state and then re-starts the agent by
creating a new thread and invoking a specific method. This

framework can be considered as the least common denomi-
nator of all mobile agent toolkits. It does not describe how
code transmission works, because this can be implemented
in different ways. In the following, we use the term migra-
tion strategy to describe how code and data are relocated.

Today’s agent toolkits (e.g. Aglets [4] or Jade [1]) only
support very simple migration strategies either based on the
push strategy (all code is transmitted to the next agency) or
pull strategy (code is loaded per class from the home agency
or a Web server). It is not surprising that neither strate-
giy leads to minimal network load and minimal application
performance in all cases [2].

Our overall goal is to increase the migration efficiency,
that is, to develop techniques so that we only transfer code
and data that are needed on remote agencies with high prob-
ability. The following list summarizes all approaches that we
have implemented so far.

1. Using adaptive transmission of code and data it is pos-
sible for the agent to decide during runtime which
classes should be pushed to the next destination and
which classes should be pulled at the destination agency
later. The agent can decide which data items must be
transferred to the next destination and which must be
sent back to the agent’s home agency.

2. Even if using a pull strategy, the Java class loading
mechanism might load classes that are never used,
which decreases the migration efficiency. We have im-
plemented a code rewriting technique on the level of
Java byte code to prevent unnecessary class loading.

3. Code caching can be a powerful technique to prevent
code transmission and therefore to increase the migra-
tion efficiency. Due to security restrictions and prob-
lems in distinguishing different versions of the same

class, many toolkits disable the built-in Java code cache.

We present an alternative approach for code caching
that goes beyond Java’s capabilities and increases code
migration efficiency significantly. Our code caching
techniques not only prevents pulling classes but also
pushing classes.

4. Finally, we propose to transmit code on the level of
single methods rather than on complete class files.
We learned that different methods of the same class
might have various execution probabilities. Therefore,
it makes sense to split classes into smaller transmission
units on transfer code on the level of methods [3].

All these approaches have been implemented in our new
mobility model, Kalong, which is also available as indepen-
dent software component. Kalong is designed to be adapt-
able to all Java-based mobile agent toolkits and has been
already integrated into Jade [1] and Tracy [2].

3. CONCLUSION AND OUTLOOK

The interest in mobile agents as a new design paradigm
for distributed systems seems to have dwindled over the last
years. The number of research groups working on mobile
agent related research topics is becoming smaller. It is ar-
gued that mobile agents were not able to satisfy main ex-
pectations, for example regarding network traffic overhead.
Vigna [8] states that mobile agents are very expensive and

1240

provide worse performance in the general case than other
design paradigms, as for example remote procedure call or
remote evaluation.

We agree with Vigna on the fact of poor performance, but
we draw different conclusions. Instead of abandoning the
concept of mobile agents, we propose to improve the migra-
tion process of mobile agents. In this paper, we have intro-
duced the notion of migration efficiency to describe reasons
for mobile agents’ poor performance. We have presented
several drawbacks of Java-based mobile agents, which all
result in a low migration efficiency. We have shown our so-
lutions to all these problems and first evaluations in small
networks showed a tremendous performance speed-up of our
improved mobility model as compared to simple push or
pull-based migration strategies.

4. REFERENCES

[1] F. Bellifimine, G. Caire, A. Poggi, and G. Rimassa.
Jade — A White Paper. EXP in search of innovation,
3(3):6-19, 2003.

[2] P. Braun and W. R. Rossak. Mobile Agents—Basic
Concept, Mobility Models, and the Tracy Toolkit.
Morgan Kaufmann Publishers, 2005.

[3] S. Kern, P. Braun, C. Fensch, and W. R. Rossak. Class
splitting as a method to reduce the migration overhead
of mobile agents. In R. Meersman, Z. Tari, and
A. Corsaro, editors, On the Move to Meaningful
Internet Systems 2004: CooplS, DOA, and ODBASE:
OTM Confederated International Conferences, CooplS,
DOA, and ODBASE 2004, Agia Napa (Cyprus),
October 2004, Proceedings, Part II, volume 3291 of
Lecture Notes in Computer Science, pages 1358—-1374.
Springer Verlag, 2004.

[4] D. B. Lange and M. Oshima. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[5] G. P. Picco. Understanding, Evaluating, Formalizing,
and Exploiting Code Mobility. PhD thesis, Politecnico
di Torino (Italy), 1998.

[6] A. Puliafito, S. Riccobene, and M. Scarpa. Which
paradigm should I use? An analytical comparison of
the client-server, remote evaluation and mobile agent
paradigms. Concurrency and Computation: Practice
and Ezperience, 13(1):71-94, 2001.

[7] G. Samaras, M. D. Dikaiakos, C. Spyrou, and
A. Liverdos. Mobile Agent Platforms for
Web-Databases: A Qualitative and Quantitative
Assessment. In D. S. Milojicic, editor, Proceedings of
the First International Symposium on Agent Systems
and Applications (ASA’99)/Third International
Symposium on Mobile Agents (MA’99), Palm Springs
(USA), October 1999, pages 50-64. IEEE Computer
Society Press, 1999.

[8] G. Vigna. Mobile agents: Ten reasons for failure
(panel). In A. Joshi and H. Lei, editors, [EEE
International Conference on Mobile Data Management
(MDM’04), Berkeley (USA), January 2004, pages
298-299. IEEE Computer Society Press, 2004.

