
An Integrated Framework for Adaptive Reasoning About
Conversation Patterns∗

Michael Rovatsos
mrovatso@inf.ed.ac.uk

School of Informatics
University of Edinburgh
Edinburgh EH8 9LE, UK

Felix Fischer
fischerf@cs.tum.edu

Department of Informatics
Technical University of Munich

85748 Garching, Germany

Gerhard Weiss
weissg@cs.tum.edu

Department of Informatics
Technical University of Munich

85748 Garching, Germany

ABSTRACT
We present an integrated approach for reasoning about and learning
conversation patterns in multiagent communication. The approach
is based on the assumption that information about the communi-
cation language and protocols available in a multiagent system is
provided in the form of dialogue sequence patterns, possibly tagged
with logical conditions and instance information. We describe an
integrated social reasoning architecturem

2

InFFrA that is capable of
(i) processing such patterns, (ii) making communication decisions
in a boundedly rational way, and (iii) learning patterns andtheir
strategic application from observation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelli-
gence—Multiagent Systems, Languages and Structures

General Terms
Languages, Theory

Keywords
Agent Communication, Evolutionary Semantics, Social Reasoning,
Interaction Frames

1. INTRODUCTION
Compared to the long-established areas of interaction protocol

and agent communication language (ACL) research [1], the de-
velopment of agent architectures suitable for dealing withgiven
communication mechanisms in practical terms has received fairly
little attention. As yet, there exists no uniform frameworkfor defin-
ing the interface between the inter-agent communication layer and
intra-agent reasoning, i.e. how specifications of interaction proto-
cols and communication semantics influence agent rationality or,
in turn, are influenced themselves by agents’ rational decision-
making.
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In this paper, we attempt to tackle this problem from a very prag-
matic perspective. We make very weak assumptions regardingthe
method used to define the available means of communication in
a multiagent system (MAS), namely that it provides (i) a descrip-
tion of the surface structure of communication processes (in the
simplest case, traces of possible message and action sequences in
agent conversations) that is tied to (ii) some form of logical con-
straints (in a tractable logical language, if they are to be used in
agent reasoning). In the following, we refer to such pairs ofsurface
structure and logical constraints asconversation patterns.

2. INTERACTION FRAMES
The greatest common denominator of the multitude of methods

for specifying ACL semantics and interaction protocols is that they
describe thesurface structureof dialogues (i.e. a set of admissible
message sequences) and logicalconstraintsfor the applicability of
these message sequences (which may include statements about en-
vironmental conditions, mental states of the participating agents,
the state of commitment stores, etc.). In the most simplistic case,
these structure/constraint pairs may be represented as combinations
of a conversation trace and a set of logical conditions. Them
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InF-
FrA architecture [6] we describe here usesinteraction framesto
represent such patterns and augments them with frequency counters
that allow for the definition of a probabilistic semantics. Consider
the following example of such a frame:

F =
〈

〈 5
→ request(A,B,X)

3
→ do(B,X)

〉

,
〈

{can(B,X)},{can(B,pay(S)}
〉

〈 2
→ 〈[A/a], [B/b], [X/pay($100)]〉,

1
→ 〈[A/b], [B/a], [X/pay(S)]〉

〉

〉

This frame reflects the following interaction experience:A has
askedB five times to perform (physical) actionX, B actually did
so in three of these instances. In two of the successful instances,
it wasa who asked andb who headed the request, and the action
was to pay $100. In both cases,can(b,pay($100)) held true. In
the third case, roles were swapped betweena andb and the amount
S remains unspecified (which does not mean that it did not have a
concrete value, but that this information was abstracted away in the
frame).

An important feature ofm2

InFFrA frames in contrast to general
conversation patterns is that they allow for storingempirical in-
formation about past conversation instances that followeda certain
pattern and also to distinguish between different sets of conditions
that held during theseenactmentsof a frame.
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3. REASONING WITH FRAMES
The ability of frames to capture instance information enables

agents to reason about communication semantics in an adaptive
fashion. In accordance with theempirical semanticsview [8] that
considers the meaning of communication as a function of its conse-
quences as experienced through the eyes of a subjective observer,
agents can adapt existing frame conceptions from new observations
and project past regularities into the future. As we will see, this can
improve their strategic communication abilities decisively, particu-
larly in opensystems where agents may or may not obey predefined
conversation patterns.

3.1 Frame Semantics
According to theprobabilistic interpretationof frames in the

m
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InFFrA model, the semantics of (a set of) frames is defined as
follows: Given anencounter prefix w, i.e. a (possibly empty) se-
quence of messages already uttered in the current encounterand a
knowledge base KBof beliefs the reasoning agent currently holds,
we can compute the set of possiblecontinuations w′ (i.e. message
sequences that will conclude the current encounter) by (i) filtering
out all those frames whose trajectories do not prefix-matchw, (ii)
considering the postfixes ofw in the remaining frames under the re-
maining possible substitutions (given thatw has already committed
certain variables to specific values), and (iii) applying those substi-
tutions whose corresponding condition sets are satisfied underKB.

3.2 Decision Making with Frames
If agents were equipped with autility estimate u(w,KB) ∈ R that

allows them to assess the usefulness of a particular sequence w of
messages (and actions) in belief stateKB, they could in principle
sum up continuation probabilities over all frames to deriveutility-
maximising decisions. However, this not only contradicts our goal
of breaking down the whole network of communicative expecta-
tions held by an agent into manageable “chunks” (i.e. frames), but
also the way in which conversation patterns for MASs are usually
defined (i.e. in terms of different protocols for different purposes,
not all of which need constantly be reasoned over while engaging
in a particular kind of interaction).

Instead we will assume (in a boundedly rational fashion) that an
agent only activates a single frame at a time within which it then
searches for an optimal action while engaging in a communicative
encounter. It will onlyre-frameif the current frame can no longer
be used or does no longer seem desirable in terms of expected util-
ity.

4. LEARNING WITH FRAMES
To learn the long-term usefulness of different frames in differ-

ent situations based on rewards obtained during previous conversa-
tions, we use thehierarchical reinforcement learning(HRL) frame-
work of options[5] and re-interpret interaction frames as “macro-
actions” [7]. The options framework reduces the overall number of
states in a Markov decision process (MDP) by combining the avail-
able actions into so-called options that can be applied overseveral
decision steps and (hopefully) optimally solve sub-problems of the
original MDP. Semi-MDP (i.e. state history dependent) variants of
learning methods such as Q-learning can then be used to optimise
the long-term “meta”-strategy over these macro-policies.

To allow for the acquisition and adaptation of a set of frames
from actual conversations, [3] further describes a method which
views frames as clusters in the space of interactions and aims at
maximising the quality of the overall clustering.

Combining these learning mechanisms with expected utility
maximisation among the choices still offered by the currently se-

lected frame (since variables provide certain degrees of freedom)
yields a two-layer hierarchical model for communicative decision
making.

5. EVALUATION
The adequacy of our approach has been tested in the Link Ex-

change Simulation systemLIESON [4]. In this system, agents rep-
resent web site owners who hold different views of the contents of
other web sites in terms of numericalprivate ratings. At the same
time, they can express their opinion about others sites by laying
numerically weighted links toward these, which then function as a
kind of public ratings. The primary goal of agents inLIESON is to
increase the dissemination of their own opinion through appropri-
ate linkage structures, and for this purpose they negotiatewith each
other over mutually beneficial linkage.

Experiments with both simpleproposal-based negotiationand
more complexargumentation-based negotiationframes prove that
m
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InFFrA manages to integrate frame application and learning ca-
pabilities in a coherent social reasoning architecture that is able to
operate successfullyin conjunction withother (sub-social) agent
activity in open MAS. See [6, 2, 7] for details and specific results.

6. CONCLUSION
In this paper, we have provided a brief summary of an integrated

framework for reasoning about conversation patterns in multiagent
systems. To our knowledge, it is the first architecture for rea-
soning about interaction patterns that combines boundedlyratio-
nal decision-making based on a probabilistic interpretation of agent
communication processes with hierarchical reinforcementlearning
for the long-term optimisation of communication strategies.
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