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1. INTRODUCTION
In complex distributed applications, such as distributed interpre-

tation, a problem is often decomposed into a set of subproblems and
each subproblem is distributed to an agent who will be responsible
for solving it. The existence of interactions between subproblems
means that the agents cannot simply solve the subproblems individ-
ually and then combine local solutions together. In such systems,
the amount of communication among agents may be very signif-
icant in order to guarantee global optimality or even global con-
sistency . Thus, “satisficing” approaches have been developed that
trade off optimality for reduced communication [2]. An important
characterization of such distributed protocols is how much commu-
nication is required and the likelihood that the solution will be the
same as that generated by an optimal centralized algorithm which
uses all available information.

Shen et al. [3] took the satisficing approach to the next step by
designing a parameterized algorithm where one can predict, for a
desired confidence level in the final solution, the expected amount
of communication the agents need. They studied these issues in
terms of a two layered Distributed Bayesian Network, as shown in
Figure 1. A decentralized Markov Decision Process (DEC-MDP)
[1] can be constructed from the Bayesian Network structure to find
a joint communication policy that minimizes the expected commu-
nication cost. The agents use only the necessary amount of com-
munication to achieve the required level of solution quality.
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Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural

Figure 1: There are two eventsE1 and E2. DataD1, D2, ...D10

are distributed between two agents.A1 has access toD1, ...D5

and is responsible for solving E1, while A2 can see only
D6, ...D10 and is responsible for solvingE2. The value ofE1

is dependent onA1’s data and vice versa. The objective is for
A1 and A2 to decide whatE1 and E2 are with required confi-
dence while minimizing the expected communication cost.

In this paper, we introduce an abstraction layer into the Dis-
tributed Bayesian Network as a way of carrying more useful in-
formation in transmitted data to further reduce the number of mes-
sages that need to be sent. An algorithm is developed to automat-
ically generate appropriate abstraction data, which reduces the ex-
pected communication cost necessary to achieve the required con-
fidence level. Techniques are introduced to effectively incorporate
this abstraction data set into the DEC-MDP framework. It is shown
that the appropriate addition of abstraction data actions simplifies
the DEC-MDP while reducing the expected communication cost.

2. GENERATING THE ABSTRACTION
LAYER

We need to find an appropriate abstraction layer from the existing
BN that, when transmitted from the remote agent, more efficiently
conveys the necessary information to facilitate the local agent’s
problem solving. In other words, this abstraction layer, when ac-
quired, should be able to reduce the expected communication nec-
essary to achieve the required local confidence level. We achieve
this goal by developing an algorithm that automatically generates
an abstraction layer given a value combination of an agent’s local
data and the desired confidence level. The basic idea behind the al-
gorithm is to find a set of logic expressions consisting of the remote
data such that if at least one of the expressions is true the required
confidence is reached. When given a BN and a desired confidence
level, the agent generates an abstraction layer for each raw data
value combination and adds them to its action options for the states
that have the corresponding raw data values. The expanded DEC-
MDP can be solved to generate a communication strategy. We call
this approach theall data action selectionapproach.

We compared the performance of theall action selectionap-
proach and theraw data action selectionapproach. The cost of
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Figure 2: A comparison of the minimum expected communica-
tion cost given different action selections

sending a piece of abstraction data was equal to the cost of sending
raw data. We used the Iterative Algorithm introduced in [3] to solve
the DEC-MDP. We ran experiments on 100 problem structures with
2 high level events and 10 raw data (5 local to each agent) for dif-
ferent confidence levels. All of the networks were fully connected,
which means that for both agents to have the complete evidence,
10 pieces of data needed to be transmitted. Figure 2 shows a com-
parison of the minimum expected communication cost generated
by both systems. Column (a) in Table 1 shows the percent im-
provement in the expected communication cost when transmitting
abstraction data in addition to the raw data. As shown, theall data
action selectionhas a noticeable improvement over theraw data
action selectionapproach. This illustrates that the addition of the
abstraction data does help reduce the communication cost required.

3. HIERARCHICAL ACTION SELECTION
Introducing the communication actions that transmit the values

of the new abstraction data leads to both a larger state space and a
larger action space for the generated DEC-MDP. Column (c) in Ta-
ble 1 shows the average time theall data action selectionapproach
took to solve the DEC-MDP, where the average time needed for the
raw data action selectionapproach equals1.00.

First we examine the case where the agents only transfer the ab-
straction data between them. We call this approach theabstraction
data action selectionapproach. While the size of the DEC-MDP
generated is often much smaller than that of the original DEC-
MDP, one major drawback of this approach is that we can no longer
guarantee that the required confidence level can be reached.

We seek to combine the advantages of theall data action se-
lection and theraw data action selectionapproaches to save time
on solving the DEC-MDP as well as guarantee the required confi-
dence level. We achieve this by restricting legal actions for differ-
ent states. Only when the acquisition of all of the abstraction data
cannot achieve the desired confidence level will an agent start to
acquire the raw data in order to get the necessary information. We
call this approach thehierarchical action selectionapproach.

Figure 2 compares the performance of the different approaches
we have discussed. On average, thehierarchical action selection
approach outperforms theraw data action selectionapproach. How-
ever, there are cases where thehierarchical action selectionap-
proach requires more communication than theraw data action se-
lection does. In those BNs, it is often the case that there is a low
likelihood of any of the abstraction data being true. Column (b) in
Table 1 shows the amount of improvement in the minimum com-
munication cost thehierarchical action selectionapproach gains
over theraw data action selectionapproach. The pattern is similar

required
confidence (a) (b) (c) (d)

60% 1.66% 0.55% 1.25 0.89
65% 9.22% 7.28% 1.53 0.77
70% 14.95% 8.31% 1.49 0.69
75% 11.76% 8.47% 1.52 0.63
80% 16.22% 9.53% 1.61 0.59
85% 8.27% 4.56% 1.41 0.65
90% 7.52% 3.40% 1.21 0.77
95% 6.80% 2.41% 1.10 0.82
100% 6.21% 2.40% 1.09 0.87

Table 1: Performance given different action selections com-
pared to transmitting only raw data. (a) Expected communi-
cation cost improvement ofall action selection. (b) Expected
communication cost improvement ofhierarchical action selec-
tion. (c) Time needed to solve the DEC-MDP forall action selec-
tion normalized by that for raw data action selection. (d) Time
needed to solve the DEC-MDP forhierarchical action selection
normalized by that for raw data action selection.

to that of column (a). Column (d) in Table 1 shows the average time
needed to solve the DEC-MDP for thehierarchical action selection
approach normalized by the average time needed for theraw data
action selectionapproach. It achieves substantial savings. Even
though thehierarchical action selectionapproach does not reduce
the size of the action space compared to theall action selectionap-
proach, it does reduce the number of legal actions available to any
given state. This also decreases the size of the state space because
H, the communication history, has fewer possibilities. These two
factors combined together contribute to the time savings, and the
larger the network is, the more substantial the savings should be.

4. CONCLUSIONS
In this paper we investigated the techniques of transferring ab-

straction data in addition to raw data in Distributed Bayesian Net-
works to reduce the required communication cost. Both the im-
provement in the minimum expected communication cost and the
time savings in solving the DEC-MDP make thehierarchical ac-
tion selectionan attractive approach to our problem, especially for
the systems which require a mid-ranged confidence level. This
work allows us to look at the use of abstraction to reduce com-
munication cost from a formal perspective. We predict that the
savings of thehierarchical action selectionapproach shown in this
paper will be more significant for larger networks. An important
extension to this work is to introduce multiple levels of abstraction,
which may help reduce the difficulty in scaling up the system.
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