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Hidden Markov Models
based on Gal Elidan notes



Introduction

Hidden Markov Models (HMM) are one of the most 
common form of probabilistic graphical models, 
although they were developed long before the notion 
of general models existed (1913). They are used to 
model time-invariant and limited horizon models that 
have both an underlying mechanism (hidden states) 
and an observable consequence. They have been 
extremely successful in language modeling and 
speech recognition systems and are still the most 
widely used technique in these domains.



Markov Models
A Markov process or model assumes that we can 
predict the future based just on the present (or on a 
limited horizon into the past):

Let {X1,…,XT} be a sequence of random variables 
taking values {1,…,N} then the Markov properties 
are:

Limited Horizon:

Time invariant (stationary):
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Describing a Markov Chain
A Markov chain can be described by the transition 
matrix A and initial state probabilities Q:

or alternatively:

and we calculate:
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Hidden Markov Models
In a Hidden Markov Model (HMM) we do not 
observe the sequence that the model passed 
through but only some probabilistic function of it. 
Thus, it is a Markov model with the addition of 
emission probabilities:
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Why use HMMs?
• A lot of real-life processes are composed of 
underlying events generating surface phenomena. 
Tagging parts of speech is a common example.

• We can usually think of processes as having a 
limited horizon (we can easily extend to the case of 
a constant horizon larger than 1)

• We have efficient training algorithm using EM

• Once the model is set, we can easily run it:
t=1, start in state i with probability qi

forever : move from state i to j with probability aij

emit yt=k with probability bik

t=t+1



The fundamental questions
Likelihood: Given a model λ=(A,B,q), how do we 
efficiently compute the likelihood of an observation 
P(Y| λ)?

Decoding: Given the observation sequence Y and a 
model µ, what state sequence explains it best 
(MPE)?
This is, for example, the tagging process of an 
observed sentence.

Learning: Given an observation sequence Y, and a 
generic model, how do we estimate the parameters 
that define the best model to describe the data?



Computing the Likelihood

Using P(Y,X)=P(Y|X)P(X) we get:

But, we have O(TNT) multiplications!
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The trellis (lattice) algorithm
To compute likelihood: Need to enumerate over all 
paths in the lattice (all possible instantiations of 
X1…XT).

But… some starting subpath (blue) is common to 
many continuing paths (blue+red)

Idea: using dynamic programming, calculate a path 
in terms of shorter sub-paths



The trellis (lattice) algorithm

We build a matrix of the probability of being at time t 
at state i - αt(i)=P(xt=i,y1y2…yt) is a function of the 
previous column (forward procedure):
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The trellis (lattice) algorithm (cont.)
We can similarly define a backwards procedure for 
filling the matrix )|()( 1 iXyyPiβ tTtt == + L
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The trellis (lattice) algorithm (cont.)
And we can easily combine:

And then
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Finding the best state sequence
We would like to the most likely path (and not just 
the most likely state at each time slice)

The Viterbi algorithm is an efficient trellis method for 
finding the MPE:

and we to reconstruct the path:
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The Casino HMM
A casino switches from a fair die (state F) to a 
loaded one (state U) with probability 0.05 and the 
other way around with probability 0.1. The loaded 
die has 0.5 probability of showing a 6. The casino, 
honestly, reads off the number that was rolled.
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The Casino HMM (cont.)
What is the likelyhood of 3151166661?

Y=    3 1 5 1 1 6 6 6 6 1
α1(1)=0.5*1/6=1/12,

α1(2)=0.5*0.1=0.05

α2(1)=1/6*(0.95*1/12+0.1*0.05) ≅ 0.014

α2(1)=0.1*(0.05*1/12+0.9*0.05) ≅ 0.0049

α3(1) ≅ 0.0023, α3(2) ≅ 0.0005

α4(1) ≅ 0.0004, α4(1) ≅ 0.0001

α5(1) ≅ 0.0001, α5(1) < 0.0001

… all smaller then 0.0001!



The Casino HMM (cont.)
What explains 3151166661 best?

Y=    3 1 5 1 1 6 6 6 6 1
δ1(1)=0.5*1/6=1/12, δ1(2)=0.5*0.1=0.05

δ2(1)=1/6*max(0.95*1/12,0.1*0.05) ≅ 0.0132

δ2(1)=1/10*max(0.05*1/12, 0.9*0.05) ≅ 0.0045

δ3(1) ≅ 0.0021, δ3(2) ≅ 0.0004 

δ4(1) ≅ 0.0003, δ4(1) < 0.0001 

δ5(1) ≅ 0.0001, δ5(1) < 0.001 …

…



The Casino HMM (cont.)
An example of reconstruction using Viterbi (Durbin):

Rolls 3151162464466442453113216311641521336

Die    0000000000000000000000000000000000000

Viterbi 0000000000000000000000000000000000000

Rolls 2514454363165662656666665116645313265

Die 0000000011111111111111111111100000000

Viterbi 0000000000011111111111111111100000000

Rolls 1245636664631636663162326455236266666

Die 0000111111111111111100011111111111111

Viterbi 0000111111111111111111111111111111111



Learning
If we were given both X and Y, we could choose

Using the Maximum Likelihood principal, we simply 
assign the parameter for each relative frequency

What do we do when we have only Y?

ML here does not have a closed form formula!
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EM (Baum Welch)
Idea: Using current guess to complete data and re-
estimate

Thm: Likelihood of observables never decreases!!!
(to be proved later in the course)

Problems: Gets stuck at sub-optimal solutions

E-Step
“Guess” X using Y 

and current parameters

M-Step
Reestimate parameters using 

current completion of data



Parameter Estimation 
We define the expected number of transitions from 
state i to j at time t:

the expected # of transition from i to j in Y is then
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Parameter Esimation (cont.)
We use EM re-estimation formulas using the 
expected counts we already have:
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