
PGM 2004/05 Tirgul 2

Hidden Markov Models
based on Gal Elidan notes

Introduction

Hidden Markov Models (HMM) are one of the most
common form of probabilistic graphical models,
although they were developed long before the notion
of general models existed (1913). They are used to
model time-invariant and limited horizon models that
have both an underlying mechanism (hidden states)
and an observable consequence. They have been
extremely successful in language modeling and
speech recognition systems and are still the most
widely used technique in these domains.

Markov Models
A Markov process or model assumes that we can
predict the future based just on the present (or on a
limited horizon into the past):

Let {X1,…,XT} be a sequence of random variables
taking values {1,…,N} then the Markov properties
are:

Limited Horizon:

Time invariant (stationary):

)|(),,|(111 tttt XiXPXXiXP === ++ K

)|(12 XiXP ==

Describing a Markov Chain
A Markov chain can be described by the transition
matrix A and initial state probabilities Q:

or alternatively:

and we calculate:

)(1 iXPqi ==)|(1 iXjXPA ttij === +

1

2

4

3

0.6
0.4

1.0
1.0

0.3

0.7

1.0

∏
−

=
+− ==

1

1
111211),()|()|()(),,(

1

T

t
ttXTTT XXAqXXPXXPXPXXP KK

Hidden Markov Models
In a Hidden Markov Model (HMM) we do not
observe the sequence that the model passed
through but only some probabilistic function of it.
Thus, it is a Markov model with the addition of
emission probabilities:

)|(iXkYPB ttik ===

Why use HMMs?
• A lot of real-life processes are composed of
underlying events generating surface phenomena.
Tagging parts of speech is a common example.

• We can usually think of processes as having a
limited horizon (we can easily extend to the case of
a constant horizon larger than 1)

• We have efficient training algorithm using EM

• Once the model is set, we can easily run it:
t=1, start in state i with probability qi

forever : move from state i to j with probability aij

emit yt=k with probability bik

t=t+1

The fundamental questions
Likelihood: Given a model λ=(A,B,q), how do we
efficiently compute the likelihood of an observation
P(Y| λ)?

Decoding: Given the observation sequence Y and a
model µ, what state sequence explains it best
(MPE)?
This is, for example, the tagging process of an
observed sentence.

Learning: Given an observation sequence Y, and a
generic model, how do we estimate the parameters
that define the best model to describe the data?

Computing the Likelihood

Using P(Y,X)=P(Y|X)P(X) we get:

But, we have O(TNT) multiplications!

∑ ∏

∑∑

=
−

=

==

T

tttt
xx

T

t
yxxxx

XX

BAq

XPXYPXYPYP

L1

11
2

)()|(),()(

The trellis (lattice) algorithm
To compute likelihood: Need to enumerate over all
paths in the lattice (all possible instantiations of
X1…XT).

But… some starting subpath (blue) is common to
many continuing paths (blue+red)

Idea: using dynamic programming, calculate a path
in terms of shorter sub-paths

The trellis (lattice) algorithm

We build a matrix of the probability of being at time t
at state i - αt(i)=P(xt=i,y1y2…yt) is a function of the
previous column (forward procedure):

1

2

N

A
1iA

2i

∑

∑

=

=
+

=

=

=

+

N

i
T

N

j
jitiyt

jyi

iYP

AjBi

Bqi

t

1

1
1

1

)()(

)()(

)(

1

1

α

αα

α

i

A Ni
1+

•
tiy

B

αt() αt+1(i)

The trellis (lattice) algorithm (cont.)
We can similarly define a backwards procedure for
filling the matrix)|()(1 iXyyPiβ tTtt == + L

∑

∑

=

=
+

=

=

=

+

N

i
iyi

n

j
tjyijt

T

iBqYP

jBAi

i

t

1
1

1
1

)()(

)()(

1)(

1

1

β

ββ

β
1

A i1
B 1y(t+

1)

A

y(t+1)

i

iN B
N

N
βt (i) βt+1()

The trellis (lattice) algorithm (cont.)
And we can easily combine:

And then

)i()i(
)iX|yy(P)iX,yy(P

)iX,yy|yy(P)iX,yy(P
)yy,iX,yy(P

)iX,yy(P)iX,Y(P

tt

tT1ttt1

tt1T1ttt1

T1ttt1

tT1t

βα=

===

===

==

===

+

+

+

LL

LLL

LL

L

∑∑ ===
i

tt
i

t)i()i()iX,Y(P)Y(P βα

Finding the best state sequence
We would like to the most likely path (and not just
the most likely state at each time slice)

The Viterbi algorithm is an efficient trellis method for
finding the MPE:

and we to reconstruct the path:

),()|(maxargmaxarg YXPYXP
xx

=

jit
j

tjitjiyt

iyi

AjiAjBi

Bqi

t
)(maxarg)()(max)(

)(

11

1

1

1

δγδδ

δ

==

=

++ +

)X̂(X̂

)i(maxargX̂)i(max)X̂(P

tt1t

T
i

TTi

γ

δδ

=

==

−

The Casino HMM
A casino switches from a fair die (state F) to a
loaded one (state U) with probability 0.05 and the
other way around with probability 0.1. The loaded
die has 0.5 probability of showing a 6. The casino,
honestly, reads off the number that was rolled.

=

2
1

10
1

10
1

10
1

10
1

10
1

6
1

6
1

6
1

6
1

6
1

6
1

B

=

9.01.0
05.095.0

A

10
1

2
1

2
1

2
1

2
1

6
1

6
1

6
1

6
1

6
1

)FFFFFUUUUU|3151166661(P

•••••••••

=

The Casino HMM (cont.)
What is the likelyhood of 3151166661?

Y= 3 1 5 1 1 6 6 6 6 1
α1(1)=0.5*1/6=1/12,

α1(2)=0.5*0.1=0.05

α2(1)=1/6*(0.95*1/12+0.1*0.05) ≅ 0.014

α2(1)=0.1*(0.05*1/12+0.9*0.05) ≅ 0.0049

α3(1) ≅ 0.0023, α3(2) ≅ 0.0005

α4(1) ≅ 0.0004, α4(1) ≅ 0.0001

α5(1) ≅ 0.0001, α5(1) < 0.0001

… all smaller then 0.0001!

The Casino HMM (cont.)
What explains 3151166661 best?

Y= 3 1 5 1 1 6 6 6 6 1
δ1(1)=0.5*1/6=1/12, δ1(2)=0.5*0.1=0.05

δ2(1)=1/6*max(0.95*1/12,0.1*0.05) ≅ 0.0132

δ2(1)=1/10*max(0.05*1/12, 0.9*0.05) ≅ 0.0045

δ3(1) ≅ 0.0021, δ3(2) ≅ 0.0004

δ4(1) ≅ 0.0003, δ4(1) < 0.0001

δ5(1) ≅ 0.0001, δ5(1) < 0.001 …

…

The Casino HMM (cont.)
An example of reconstruction using Viterbi (Durbin):

Rolls 3151162464466442453113216311641521336

Die 0000000000000000000000000000000000000

Viterbi 0000000000000000000000000000000000000

Rolls 2514454363165662656666665116645313265

Die 0000000011111111111111111111100000000

Viterbi 0000000000011111111111111111100000000

Rolls 1245636664631636663162326455236266666

Die 0000111111111111111100011111111111111

Viterbi 0000111111111111111111111111111111111

Learning
If we were given both X and Y, we could choose

Using the Maximum Likelihood principal, we simply
assign the parameter for each relative frequency

What do we do when we have only Y?

ML here does not have a closed form formula!

),,|,(maxarg
,

QBAXYP trainingtraining
BA

),,|(maxarg
,

QBAYP training
BA

EM (Baum Welch)
Idea: Using current guess to complete data and re-
estimate

Thm: Likelihood of observables never decreases!!!
(to be proved later in the course)

Problems: Gets stuck at sub-optimal solutions

E-Step
“Guess” X using Y

and current parameters

M-Step
Reestimate parameters using

current completion of data

Parameter Estimation
We define the expected number of transitions from
state i to j at time t:

the expected # of transition from i to j in Y is then

∑∑ +

+
+

+

+====

m n
tnymnt

tjyijt
ttt nBAm

jBAi
YjXiXPjip

t

t

)()(
)()(

)|,(),(
1

1
1

1

1

βα
βα

∑
=

T

t
t jip

1
),(

Parameter Esimation (cont.)
We use EM re-estimation formulas using the
expected counts we already have:

∑∑

∑ ∑
==

==

=

=

∑∑

∑

∑=

t j

j ktyt

jitp

jitp

istatefromemissionsofected

istatefromkofemissionsofected
ik

t j
jitp

t
jitp

istatefromstransitionofected

jtoistatefromstransitionofected
ij

j
jiPtimeatistateinfrequencyectedi

b

a

q

),(

),(

#exp

#exp

),(

),(

#exp

#exp

),(1exp

:

1

