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Binary Search Trees
sample questions
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Q. Write a pseudo code for computing the height of a binary 
search tree (BST), what is its time complexity?

A. The height of a binary tree is the maximum between the 
height of its children + 1. We can write a simple recursive 
algorithm for calculating the height:
int height(node) {
if (node == null)

return -1;
return (1 + max(height(node.left), 

height(node.right)));
}

The algorithm visits all of the tree nodes
its time complexity is O(n)
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Q. You are provided with a nearly BST, a binary tree in which for 
every node, either the key of its left child is smaller than its
key and the key of its right child is bigger, or vice versa. Write 
a pseudo code for fixing the tree, what is its complexity?

A. The solution is very simple, we should check each node and 
swap its children if necessary, pay attention that fixing (or not 
fixing) a node doesn’t say we shouldn’t fix its children.  
void fix(node) {
// should check for nulls
if (node.left.key > node.right.key)

swap(node.left,node.right)
fix(node.left);
fix(node.right);

}

The algorithm visits all of the tree nodes
its time complexity is O(n)
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Q. Your colleague tells you he has found a remarkable BST 
property: Suppose that the search for key k in a binary search 
tree ends up in a leaf. Consider three sets: A - the keys to the 
left of the search path; B - the keys on the search path;       
and C - the keys to the right of the search path. He claims that 
any three keys                                      must satisfy a < b < c. 
Is the claim true?

A. No:

CcBbAa ⊂⊂⊂  and  ,
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Q. Write an algorithm for building a sorted circular doubly linked 
list containing the elements of a BST, what is its complexity?

A. We should iterate through all the tree nodes, starting with the 
minimum and moving to the successor and add them to the 
list (remembering to link the last node to the first one)

--- no pseudo code ---

Traversing through all the nodes takes O(n) (previous tirgul). 
Adding n elements to the list takes O(n) as well

the total time complexity is therefore O(n)
One drawback:
We need an extra O(n) space complexity (for the list)
can we avoid the extra space?
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Q. Write an algorithm for the same purpose without using the 
extra space (at the same time complexity)

A. We exploit the fact that the keys of all the members to the left
of a node are smaller than that of the node while all those to 
its right are larger.
Intuitively, we would like to convert the left subtree into a list, 
convert the right subtree into a list and concatenate the lists 
[LEFT, node, RIGHT]. 
The algorithm is recursive and does exactly so                  
It uses the tree nodes pointers (NO EXTRA SPACE!). In the 
result list, left means previous while right means next 
The algorithm performs a constant amount of work for each 
node and its time complexity is therefore linear
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List TreeToList(root) {
if (root == null)

return null;
List LEFT  = TreeToList(root.left);
List RIGHT = TreeToList(root.right);
List ROOT = makeList(root);
return concatenate(LEFT, ROOT, RIGHT);

}

makeList - takes a single tree node and builds a circular 
doubly linked list (containing one element) of it.
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concatenate - takes three circular doubly linked lists and 
concatenates them into one list (assume it can handle null 
lists)

List concatenate(LEFT, ROOT, RIGHT) {
// should handle null lists
LEFT.left.right = ROOT;
ROOT.left = LEFT.left;
ROOT.right = RIGHT;
RIGHT.left.right = LEFT;
LEFT.left = RIGHT.left;
RIGHT.left = ROOT;
return LEFT;

}
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Concatenate example
LEFT ROOT RIGHT

LEFT ROOT RIGHT

LEFT.left.right = ROOT;
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LEFT ROOT RIGHT

ROOT.left = LEFT.left;

LEFT ROOT RIGHT

ROOT.right = RIGHT;
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LEFT ROOT RIGHT

RIGHT.left.right = LEFT;

LEFT ROOT RIGHT

LEFT.left = RIGHT.left;
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LEFT ROOT RIGHT

RIGHT.left = ROOT;


