
1

DAST 2005

Tirgul 9

Binary Search Trees
sample questions

DAST 2005

Q. Write a pseudo code for computing the height of a binary
search tree (BST), what is its time complexity?

A. The height of a binary tree is the maximum between the
height of its children + 1. We can write a simple recursive
algorithm for calculating the height:
int height(node) {
if (node == null)

return -1;
return (1 + max(height(node.left),

height(node.right)));
}

The algorithm visits all of the tree nodes
its time complexity is O(n)

DAST 2005

Q. You are provided with a nearly BST, a binary tree in which for
every node, either the key of its left child is smaller than its
key and the key of its right child is bigger, or vice versa. Write
a pseudo code for fixing the tree, what is its complexity?

A. The solution is very simple, we should check each node and
swap its children if necessary, pay attention that fixing (or not
fixing) a node doesn’t say we shouldn’t fix its children.
void fix(node) {
// should check for nulls
if (node.left.key > node.right.key)

swap(node.left,node.right)
fix(node.left);
fix(node.right);

}

The algorithm visits all of the tree nodes
its time complexity is O(n)

2

DAST 2005

Q. Your colleague tells you he has found a remarkable BST
property: Suppose that the search for key k in a binary search
tree ends up in a leaf. Consider three sets: A - the keys to the
left of the search path; B - the keys on the search path;
and C - the keys to the right of the search path. He claims that
any three keys must satisfy a < b < c.
Is the claim true?

A. No:

CcBbAa ⊂⊂⊂ and ,

2

3

4

6

5 8

DAST 2005

Q. Write an algorithm for building a sorted circular doubly linked
list containing the elements of a BST, what is its complexity?

A. We should iterate through all the tree nodes, starting with the
minimum and moving to the successor and add them to the
list (remembering to link the last node to the first one)

--- no pseudo code ---

Traversing through all the nodes takes O(n) (previous tirgul).
Adding n elements to the list takes O(n) as well

the total time complexity is therefore O(n)
One drawback:
We need an extra O(n) space complexity (for the list)
can we avoid the extra space?

DAST 2005

Q. Write an algorithm for the same purpose without using the
extra space (at the same time complexity)

A. We exploit the fact that the keys of all the members to the left
of a node are smaller than that of the node while all those to
its right are larger.
Intuitively, we would like to convert the left subtree into a list,
convert the right subtree into a list and concatenate the lists
[LEFT, node, RIGHT].
The algorithm is recursive and does exactly so
It uses the tree nodes pointers (NO EXTRA SPACE!). In the
result list, left means previous while right means next
The algorithm performs a constant amount of work for each
node and its time complexity is therefore linear

3

DAST 2005

List TreeToList(root) {
if (root == null)

return null;
List LEFT = TreeToList(root.left);
List RIGHT = TreeToList(root.right);
List ROOT = makeList(root);
return concatenate(LEFT, ROOT, RIGHT);

}

makeList - takes a single tree node and builds a circular
doubly linked list (containing one element) of it.

DAST 2005

concatenate - takes three circular doubly linked lists and
concatenates them into one list (assume it can handle null
lists)

List concatenate(LEFT, ROOT, RIGHT) {
// should handle null lists
LEFT.left.right = ROOT;
ROOT.left = LEFT.left;
ROOT.right = RIGHT;
RIGHT.left.right = LEFT;
LEFT.left = RIGHT.left;
RIGHT.left = ROOT;
return LEFT;

}

DAST 2005

Concatenate example
LEFT ROOT RIGHT

LEFT ROOT RIGHT

LEFT.left.right = ROOT;

4

DAST 2005

LEFT ROOT RIGHT

ROOT.left = LEFT.left;

LEFT ROOT RIGHT

ROOT.right = RIGHT;

DAST 2005

LEFT ROOT RIGHT

RIGHT.left.right = LEFT;

LEFT ROOT RIGHT

LEFT.left = RIGHT.left;

DAST 2005

LEFT ROOT RIGHT

RIGHT.left = ROOT;

