
1

DAST 2005

Tirgul 7

Binary Search Trees

DAST 2005

Motivation
• We would like to have a dynamic ADT that efficiently

supports the following common operations:
• Insert & Delete
• Search for an element
• Minimum & Maximum
• Predecessor & Successor

• Use a binary tree! All operations take Θ(h)
• When the tree is balanced, h=log(n)

DAST 2005

Binary search tree
• A binary search tree has a root, internal nodes with at

most two children each, and leaf nodes
• Each node x has left(x), right(x), parent(x), and key(x)

fields (and possibly other fields as well).
Binary-search-tree properties:
• Let x be the root of a sub-tree, and y a node below it.

y resides in the:
• left sub-tree if key(y) < key(x)
• right sub-tree if key(y) > key(x)

2

DAST 2005

Examples of binary trees

5

3

5

7

82

5

2

3

7

85

DAST 2005

Tree-Search routine
Tree-Search(x,k)

if x = null or k = key[x]
then return x

if k < key[x]
then return Tree-Search(left[x],k)
else return Tree-Search(right[x],k)

Iterative-Tree-Search(x,k)
while x ≠ null and k ≠ key[x]

do if k < key[x]
then x left[x]
else x right[x]

return x (Complexity: O(h))

DAST 2005

Example: search in a binary tree

Search for 13 in the tree

3

DAST 2005

Tree traversal
Inorder-Tree-Walk(x)
if x ≠ null

then Inorder-Tree-Walk(left[x])
print key[x]
Inorder-Tree-Walk(right[x])

• Recurrence equation:
• T(0) = Θ(1)
• T(n)=T(k) + T(n – k –1) + Θ(1)

Complexity: Θ(n)

DAST 2005

Max and Min-Search routines
Tree-Minimum(x)

while left[x] ≠ null
do x left[x]

return x

Tree-Maximum(x)
while right[x] ≠ null

do x right[x]
return x

Complexity: Θ(h)

DAST 2005

Tree-Successor routine
• The successor of x is the smallest element y with a

key greater than that of x
• The successor of x can be found without comparing

the keys. It is either:
1. null if x is the maximum node.
2. the minimum of the right child of t

when t has a right child.
3. or else, the lowest ancestor of x whose left child

is also an ancestor of x.

4

DAST 2005

Tree-Successor: cases 2,3

x

Minimum of right
child of t

Lowest ancestor z of t
whose left child y is also

an ancestor of t

y

z

x

DAST 2005

Tree-Successor routine
Tree-Successor(x)
if right[x] ≠ null // Case 2

then return Tree-Minimum(right[x])
y parent[x] // Case 3
while y ≠ null and x = right[y] do

x y
y parent[y]

return y

DAST 2005

Insert
• Insert is very similar to search:
• We search for the value, if we do not find it, we

continue searching along either the left or right
branch.

• Eventually we will reach a null leaf, and simply add
the value at that position.

• The complexity is proportional to the height of the
tree

5

DAST 2005

Example: insertion

12

5

9

18

1915

17

2

13Insert 13 in the tree

DAST 2005

Tree-insert routine
Tree-Insert(T,z)
y null
x root[T]
while x ≠ null
do y x

if key[z]<key[x]
then x left[x]

else x right[x]
parent[z] y

// When the tree is empty
if y = null then
root[T] z

elseif key[z]< key[y]
then left[y] z

else right[y] z

y is the parent of x

DAST 2005

Delete
• Delete is more complicated than insert. There are

three cases to delete node z:
1. z has no children
2. z has one child
3. z has two children

► Case 1: delete z and update the child’s parent child
to null.

► Case 2: delete z and connect its parent to its child.
► Case 3: more complex; we can’t just take the node

out and reconnect its parent with its children, because
the tree will no longer be a binary tree!

6

DAST 2005

Delete case 1: no children!

delete

DAST 2005

Delete case 2: one child

delete

DAST 2005

Delete
• For case 3, the solution is to replace the node by its

successor (or predecessor), and “pull” the
successor, which necessarily has one child at most.

• Claim: if a node has two children, its successor has
at most one child.

• Proof: This is because if the node has two children,
its successor is the minimum of its right sub-tree.
This minimum cannot have a left child because then
the child would be the minimum…

• Invariant: in all cases the binary search tree
property is preserved after the deletion.

7

DAST 2005

Delete: case 3

z

α β

δ

Delete z

y

w

y

α β

δ

w

DAST 2005

Delete: case 3
delete

successor

DAST 2005

Tree-Delete routine

8

DAST 2005

Complexity analysis
• Delete: The two first cases take O(1) operations: they

involve switching the pointers of the parent and the
child (if it exists) of the node that is deleted.

• The third case requires a call to Tree-Successor, and
thus can take O(h) time.

• In conclusion: all dynamic operations on a binary
search tree take O(h), where h is the height of the
tree.

• In the worst case, the height of the tree can be
O(n)

