Tirgul 7

Binary Search Trees

DAST 2005

Motivation

» We would like to have a dynamic ADT that efficiently
supports the following common operations:
* Insert & Delete
+ Search for an element
* Minimum & Maximum
» Predecessor & Successor

* Use a binary tree! All operations take ©(/)
* When the tree is balanced, /=log(n)

DAST 2005

Binary search tree

» A binary search tree has a root, internal nodes with at
most two children each, and leaf nodes

» Each node x has left(x), right(x), parent(x), and key(x)
fields (and possibly other fields as well).

Binary-search-tree properties:

» Let x be the root of a sub-tree, and y a node below it.
y resides in the:

* left sub-tree if key(y) < key(x)
« right sub-tree if key(y) > key(x)

DAST 2005

Examples of binary trees

@

PN \;

DAST 2005

Tree-Search routine

Tree-Search(x,k)
if x = null or k = key|x]
then return x
if k < keyx]
then return Tree-Search(left[x] k)
else return Tree-Search(right[x].k)

Iterative-Tree-Search(x,k)
while x # null and k # key[x]

do if k < keylx]
then x & left[x]
else x € right[x] .
return x (Complexity: O(h))

DAST 2005

Example: search in a binary tree

Search for 13 in the tree

DAST 2005

Tree traversal

Inorder-Tree-Walk (x)
if x # null
then Inorder-Tree-Walk(left[x])
print key[x]
Inorder-Tree-Walk (right[x])
* Recurrence equation:
* T(0)=0(1)
e T(n)=T(k) + T(n—k-1) + ©(1)

S Complexity: O(n)

DAST 2005

Max and Min-Search routines

Tree-Minimum (x)
while left[x] # null
do x €& left[x]
return x

Tree-Maximum (x)
while right([x] # null

do x €& right[x]
return x

> Complexity: O(h)

DAST 2005

Tree-Successor routine
The successor of x is the smallest element y with a
key greater than that of x

The successor of x can be found without comparing
the keys. It is either:

1. null'if x is the maximum node.

2. the minimum of the right child of t
when t has a right child.

3. or else, the lowest ancestor of x whose left child
is also an ancestor of x.

DAST 2005

Tree-Successor: cases 2,3

Minimum of right

child of t @
\

/@\ Q Lowest ancestor z of t
@whose left child y is also

an ancestor of 't

DAST 2005

Tree-Successor routine

Tree-Successor (x)

if right[x] # null // Case 2
then return Tree-Minimum(right[x])

y € parent[x] //Case 3
while y # null and x = right[y] do
x €y
y € parent|y]
return y
DAST 2005
Insert

Insert is very similar to search:

We search for the value, if we do not find it, we
continue searching along either the left or right
branch.

Eventually we will reach a null leaf, and simply add
the value at that position.

The complexity is proportional to the height of the
tree

DAST 2005

Example: insertion

12
O, (18)

® 1y @

Insert 13 in the tree @ E'D

DAST 2005

Tree-insert routine

Tree-Insert (T, z) /I When the tree is empty
y € null if y = null then
x € root[T] root[T] €z
while x # null elseif key[z]< keylyl
doy € x then left[y] €z
if key[z]<key[x] else right[y] €z

then x €left[x]
else x €right[x]
parent[z] €y

y is the parent of x

DAST 2005

Delete

« Delete is more complicated than insert. There are
three cases to delete node z:

1. z has no children
2. zhas one child
3. zhas two children

» Case 1: delete z and update the child’s parent child
to null.

» Case 2: delete z and connect its parent to its child.

» Case 3: more complex; we can't just take the node
out and reconnect its parent with its children, because
the tree will no longer be a binary tree!

DAST 2005

Delete case 1: no children!

Jib)
s s 16
& ez . SN
(3] 12) 20 w (3 201
10 NET (ﬁj 23 18 23
@ i
T delete
DAST 2005
Delete case 2: one child
delete .
o a3 - ete a8
(5% 16)% (5 ~@0)
. S . ¥
¥y e B @ ® @ ®
(USRI w0

DAST 2005

Delete

» For case 3, the solution is to replace the node by its
successor (or predecessor), and “pull” the
successor, which necessarily has one child at most.

» Claim: if a node has two children, its successor has
at most one child.

» Proof: This is because if the node has two children,
its successor is the minimum of its right sub-tree.
This minimum cannot have a left child because then
the child would be the minimum...

+ Invariant: in all cases the binary search tree
property is preserved after the deletion.

DAST 2005

Delete: case 3

DAST 2005

Delete: case 3

s
JOXS

2

O

successor

DAST 2005

Tree-Delete routine

TREE=DELETE (T, =)

A

1 if Jeft[=] = NIL or right[=z] = NIL
2 then ¥ - =

3 else y — TREE-SUCCESSOR (=)

4 if lerft[y] # NWNIL

5 then x — left(y]

[else x . right[y]

T if x ¥+ NIL

a8 then plx] — ply¥]

9 4if pl[y] = NIL

10 then root[T] — x

11 aelsa if leftiplyll

12 then left[plyv]l] — x

13 else rightlplyl] — x
14 if yv # =

15 then key[z] — keyly)

16 copy ¥'s satellite data into =

17 return

DAST 2005

Complexity analysis
Delete: The two first cases take O(1) operations: they
involve switching the pointers of the parent and the
child (if it exists) of the node that is deleted.
The third case requires a call to Tree-Successor, and
thus can take O(h) time.
In conclusion: all dynamic operations on a binary
search tree take O(h), where h is the height of the
tree.
In the worst case, the height of the tree can be
O(n)

DAST 2005

