Tirgul 7

Heap Sort

some more stuff

DAST 2005

Build Heap

« We have an array of numbers which we want to turn into a
heap

Approach 1:
for i=1,...,n { (due to convexity)
insert (A[i])
}

(worst case) Complexity: Zlogi > Z]og% =n(logn—1log2)=Q(nlogn)
i=1 i=n/2
(will happen for some input,
AQQI’OGCh 2: for example a sorted array)
for i={n/2] down to 1 {
max_heapify (A[i])
}

DAST 2005

Build Heap

+ Complexity:
- We have a trivial upper bound of n-log(n)
- In fact, we can achieve a tighter bound:

logn logn
T(n)=151+220 43204 tlogn=) kZt=(n+1)) &
k=1 k=1
1 1 1 1
R - O
1 1 1
R s

logn
=(n+1) AL (= (DY L <2(n+1)=0(n)
i=0

1
+u

DAST 2005

Heap Sort

HEAPSORT (A)
1 BUILD-MAX-HEAP (A)
2 for i — length[A] downto 2

3 do exchange A[l] - A[i]
q heap-sizel[A] ~ heap-size[A] - 1
5 MAX-HEAPIFY (A, 1)

Complexity:

* line 1 (build heap): O(n)
* lines 2-5 n-log(n)
2 altogether O(n-log(n))

DAST 2005

Sorting - Summary

Algorithm | Average Worst Randomized | Additional | Stable | Data types
Memory ?
Radix sort n n - O(k+n) yes integers
Bobble sort n2 n? - o(1) yes | comparable
Insertion sort n2 n2 - o(1) yes | comparable
Merge sort n 'log(n) n 'log(n) - O(n) yes | comparable
Heap sort n-log(n) | nlog(n) - o(1) no | comparable
Quick sort n 'log(n) n2 n ,10g(n) o(1) no comparable
DAST 2005

Ex4 —Q2.a

We need to show that:
(N —-a)log(N —a)+aloga+N > Nlog N
or that (N —a)log(N —a)+aloga+N(1-logN)>0

100,

W 20 W 40 S0 40 70 30 0 100
DAST 2005

Ex4 —Q2.a

f(x)=(N—-a)log(N —a)+aloga+N(-logN)
f'(x)=-log(N—-a)-1+loga+1=loga—log(N —a)
f'x)=0=>a=N-a=2a=N

We still have to decide whether the point is a local
maxima, minima or an inflection point, but we know that:

fO)=N
f(N)=N
f(N/2)=0
2 N2isalocal minima — Aix)20

DAST 2005

Ex4 —Q2.b

We have shown that the average depth of leaves in a tree
containing n leaves is log(n)

When we fix the random decisions made by a random sorting
algorithm we get a decision tree

The number of leaves in this tree is n! (although the algorithm is
random, we still need to be able to reach all the possible permutations)
We need to show that there is at least one input, for which the
average of all routes from root to leaf in all of the random

decision trees is nlog(n) (remember, when we want to compute
random complexity, we calculate an average of all the random decisions)

DAST 2005

Ex4 — Q2.b

We can number the permutations from 1 to n!

A correct sorting of an input is a permutation in which ¢; <a;
foreachi<j

We know that the average depth of the leaves in each of
these trees is nlog(n)

There is at least one permutation, p, which matches a leaf that

has an average depth of at least nlog(n) in all of the trees
(remember that each leaf is a possible permutation of the input)

2 The random complexity of the algorithm (any algorithm) is
Q(nlog(n))

DAST 2005

