
1

DAST 2005

Tirgul 7

Heap Sort
some more stuff

DAST 2005

Build Heap
• We have an array of numbers which we want to turn into a

heap
Approach 1:

for i=1,...,n {
insert (A[i])

}
(worst case) Complexity:

Approach 2:
for i=n/2 down to 1 {
max_heapify(A[i])

}

)log()2log(logloglog
2/1

2 nnnni
n

ni

n

i

n Ω=−=≥ ∑∑
==

(due to convexity)

(will happen for some input,
for example a sorted array)

DAST 2005

Build Heap
• Complexity:
- We have a trivial upper bound of n⋅log(n)
- In fact, we can achieve a tighter bound:

)()1(2)1(

...
...
...
...

)1(

)1(log...321)(

log

0
2
1

1

1
8
1

1
8
1

4
1

1
8
1

4
1

2
1

log

1
2

log

1
2

1
8

1
4

1
2

1

nOnnn

nknnT

n

i

n

n

n

n

n

k

k
n

k

nnnn

i

kk

=+≤+=























+

+++

++++

++++

+=

+==++++=

∑

∑∑

=

==

++++

2

DAST 2005

Heap Sort

:Complexity

• line 1 (build heap): O(n)

• lines 2-5 n⋅log(n)

altogether O(n⋅log(n))

DAST 2005

Sorting - Summary

comparablenoO(1)n⋅log(n)n2n⋅log(n)Quick sort

comparablenoO(1)-n⋅log(n)n⋅log(n)Heap sort

comparableyesO(n)-n⋅log(n)n⋅log(n)Merge sort

comparableyesO(1)-n2n2Insertion sort

comparableyesO(1)-n2n2Bobble sort

integersyesO(k+n)-nnRadix sort

Data typesStable
?

Additional
Memory

RandomizedWorstAverageAlgorithm

DAST 2005

Ex4 – Q2.a

0)log1(log)log()(
loglog)log()(

≥−++−−
≥++−−

NNaaaNaN
NNNaaaNaN

 that or

We need to show that:

3

DAST 2005

Ex4 – Q2.a

NaaNaxf
a)(Naaa)(Nxf

NNaaaNaNxf

=⇒−=⇒=
−−=++−−−=

−++−−=

20)('
loglog1log1log)('

)log1(log)log()()(

We still have to decide whether the point is a local
maxima, minima or an inflection point, but we know that:

0)2/(
)(

)0(

=
=
=

Nf
NNf
Nf

N/2 is a local minima → f(x) ≥ 0

DAST 2005

Ex4 – Q2.b
• We have shown that the average depth of leaves in a tree

containing n leaves is log(n)
• When we fix the random decisions made by a random sorting

algorithm we get a decision tree
• The number of leaves in this tree is n! (although the algorithm is

random, we still need to be able to reach all the possible permutations)

• We need to show that there is at least one input, for which the
average of all routes from root to leaf in all of the random
decision trees is nlog(n) (remember, when we want to compute
random complexity, we calculate an average of all the random decisions)

DAST 2005

Ex4 – Q2.b
• We can number the permutations from 1 to n!
• A correct sorting of an input is a permutation in which

for each i < j
• We know that the average depth of the leaves in each of

these trees is nlog(n)
• There is at least one permutation, p, which matches a leaf that

has an average depth of at least nlog(n) in all of the trees
(remember that each leaf is a possible permutation of the input)

The random complexity of the algorithm (any algorithm) is
Ω(nlog(n))

ji aa <

