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Tirgul 7

Heap Sort
some more stuff
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Build Heap
• We have an array of numbers which we want to turn into a 

heap
Approach 1:

for i=1,...,n {
insert (A[i])

}
(worst case) Complexity:

Approach 2:
for i=n/2 down to 1 {
max_heapify(A[i])

}
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(due to convexity)

(will happen for some input, 
for example a sorted array)
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Build Heap
• Complexity:
- We have a trivial upper bound of n⋅log(n)
- In fact, we can achieve a tighter bound:
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Heap Sort

:Complexity

• line 1 (build heap): O(n)

• lines 2-5 n⋅log(n)

altogether O(n⋅log(n))
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Sorting - Summary

comparablenoO(1)n⋅log(n)n2n⋅log(n)Quick sort

comparablenoO(1)-n⋅log(n)n⋅log(n)Heap sort

comparableyesO(n)-n⋅log(n)n⋅log(n)Merge sort

comparableyesO(1)-n2n2Insertion sort

comparableyesO(1)-n2n2Bobble sort

integersyesO(k+n)-nnRadix sort

Data typesStable
?

Additional 
Memory

RandomizedWorstAverageAlgorithm
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Ex4 – Q2.a
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We need to show that:
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Ex4 – Q2.a
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We still have to decide whether the point is a local 
maxima, minima or an inflection point, but we know that:
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N/2 is a local minima      → f(x) ≥ 0
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Ex4 – Q2.b
• We have shown that the average depth of leaves in a tree 

containing n leaves is log(n)
• When we fix the random decisions made by a random sorting 

algorithm we get a decision tree
• The number of leaves in this tree is n! (although the algorithm is 

random, we still need to be able to reach all the possible permutations)

• We need to show that there is at least one input, for which the 
average of all routes from root to leaf in all of the random 
decision trees is nlog(n) (remember, when we want to compute 
random complexity, we calculate an average of all the random decisions)
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Ex4 – Q2.b
• We can number the permutations from 1 to n!
• A correct sorting of an input is a permutation in which       

for each i < j
• We know that the average depth of the leaves in each of 

these trees is nlog(n)
• There is at least one permutation, p, which matches a leaf that 

has an average depth of at least nlog(n) in all of the trees 
(remember that each leaf is a possible permutation of the input)

The random complexity of the algorithm (any algorithm) is 
Ω(nlog(n))

ji aa <


