
1

DAST 2005

Tirgul 6

Heaps
Induction

DAST 2005

Heaps
• A binary heap is a nearly complete binary tree stored in an

array object
• In a max heap, the value of each node ≥ that of its children
• (In a min heap, the value of each node ≤ that of its children)

• Since the height of a heap containing n elements is Θ(log(n))
the basic operations on a heap run in time that is proportional
to the heaps height and thus take O(log(n))

DAST 2005

Heaps

2

DAST 2005

Heaps

DAST 2005

Mathematical Induction

• Mathematical induction is a method of mathematical proof
typically used to establish that a given statement is true for
all natural numbers, or for all members of an infinite
sequence

• The simplest and most common form of mathematical
induction proves that a statement holds for all natural
numbers n and consists of two steps:

1. The basis: showing that the statement holds when n = 0.
2. The inductive step: showing that if the statement holds for n = k, it

also holds for n = k + 1.

DAST 2005

Mathematical Induction

• This method works by:
1. First proving the statement is true for a starting value
2. Then proving that the process used to go from one value to the next

is valid.
• If these are both proven, then any value can be obtained by

performing the process repeatedly
• For example, suppose we have a long row of dominos

standing, and we can be sure that:
1. The first domino will fall.
2. Whenever a domino falls, its next neighbor will also fall.
We can conclude that all dominos will fall.

3

DAST 2005

Mathematical Induction
• Suppose we wish to prove the following statement:

• Proof by induction:
• Check if it is true for n = 0
• Assume the statement is true for n = m

• Adding m+1 to both sides gives:

2
)1(...210)(+

=++++=
nnnnS

0
2

10)0(=
⋅

=S

2
)1(...10)(+

=+++=
mmmmS

)1(
2

)2)(1(
2

)1(2
2

)1(

1
2

)1(1...10

+=
++

=
+

+
+

=

++
+

=+++++

mSmmmmm

mmmmm

DAST 2005

Mathematical Induction
• Note that it has not been proven as true: we made the

assumption that S(m) is true, and from that assumption we
derived S(m+1). Symbolically, we have shown that:

• However, by induction, we may now conclude that the
statement S(n) holds for all natural numbers n.

)1()(+→ mSmS

we have showed S(0)
we have showed that S(0)→S(1)
we have showed that S(1)→S(2)
etc.

DAST 2005

Generalization
• A common generalization is proving that a claim is true

for all n ≥ c
1. Showing that the statement holds when n = c
2. Showing that if the statement holds for n = m ≥ c, it also holds

for n = m+1

• This can be used for showing that n2 ≥ 10n for all n ≥ 10
1. For n==10, n2 = 10*10 = 10n
2. Assuming the statement holds for n = m ≥ 10, we get:

()101210
)1(10121012)1(22

>+⇒≥
+>++≥++=+

mm
mmmmmm

4

DAST 2005

Complete Induction
• Another form of mathematical induction is the

complete-induction (also called strong-induction)
• In complete induction, the inductive hypothesis, instead of

simply is
• (we have a stronger inductive hypothesis, hence the name strong-induction)

• The complete induction steps are therefore:
1. Showing that the statement holds for n = 0 (or n = c)
2. Showing that if the statement holds for all c ≤ n ≤ m then the same

statement also holds for n = m+1

)(}1,...,1{ iHni −∈∀)1(−nH

DAST 2005

The game of Nin
• Rules:

• Two players throw a number of stones on the ground
• At each turn, a player removes one two or three stones
• The one to remove the last stones loses

• Proposition:
• The second player has a winning strategy iff the number of stones

is 4k+1, otherwise the first player has a winning strategy

• Proof:
• Base case – there is only one stone, the second player wins (1=4k+1)
• Induction: Assume that P(n) is true for all 1≤n≤m and prove that P(n+1) is

true as well

DAST 2005

The game of Nin
• We have four possible cases:

1. n+1 = 4k+1, We have already showed P(1) to be true, so we assume
that n+1≥ 5. The first player can lift either one, two, or three stones,
leaving either 4k,4(k−1)+3,4(k−1)+2 respectively. By the induction
hypothesis, the person who plays next has a winning strategy.

2. n+1 = 4k, The first player can remove just three stones, leaving
n = 4(k−1)+1. The strong induction hypothesis asserts that the
second player loses.

3. n+1 = 4k+2, The first player can remove just one stone, leaving
n = 4k + 1. The strong induction hypothesis asserts that the second
player loses.

4. n+1 = 4k+3, The first player can remove two stones, leaving
n = 4k + 1. The strong induction hypothesis asserts that the second
player loses.

5

DAST 2005

Loop Invariants
• A loop invariant is statement that is true when a program

enters a loop, remains true in each iteration of the body of
the loop, and is still true when control exits the loop.

• Understanding loop invariants can help us analyze
programs, check for errors, and derive programs from
specifications.

• The loop invariant technique is a derived from the
mathematical induction:

1. We first check that the statement is true when the loop is first
entered

2. We then verify that if the invariant is true after n times around the
loop, it also true after n+1 times

DAST 2005

Loop Invariants
• public static int factorial(int num) {
• int P = 1;
• int C = 0;
• while (C < num) { // P = C! (our loop

invariant)
• C++;
• P *= C;
• } // P = C! (our loop

invariant)
• return (P);
• }
• Our loop invariant is true when we first enter and last leave

the loop

DAST 2005

Insertion sort
• The outer loop of insertion sort is:

for (outer = 1; outer < a.length; outer++) {...}
• The invariant is that all the elements to the left of outer

are sorted with respect to one another
• For all i < outer, j < outer, if i < j then a[i] <= a[j]
• This does not mean they are all in their final correct place; the

remaining array elements may need to be inserted
• When we increase outer, a[outer-1] becomes to its left; we

must keep the invariant true by inserting a[outer-1] into its
proper place

• This means:
1. Finding the element’s proper place
2. Making room for the inserted element (by shifting over other

elements)
3. Inserting the element

6

DAST 2005

Code for Insertion Sort
• public static void insertionSort(int[] array)
• int inner, outer;
for(outer=1; outer<array.length; outer++) {

int temp = array[outer];
inner = outer;
while(inner>0 && array[inner-1] >= temp) {

array[inner] = array[inner - 1];
inner--;

}
• array[inner] = temp;

// Invariant: For all i < outer, j < outer, if i < j then a[i] ≤ a[j]
}

• }

DAST 2005

Insertion Sort - Loop Invariants
• The loop invariant is true before the loop is first executed
• If the loop invariant holds after n times around the loop, the

inner loop makes sure we insert the n+1 element in place,
therefore the loop invariant also true after n+1 times

