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Heaps
• A binary heap is a nearly complete binary tree stored in an 

array object
• In a max heap, the value of each node ≥ that of its children
• (In a min heap, the value of each node ≤ that of its children)

• Since the height of a heap containing n elements is Θ(log(n))
the basic operations on a heap run in time that is proportional 
to the heaps height and thus take O(log(n))
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Mathematical Induction

• Mathematical induction is a method of mathematical proof 
typically used to establish that a given statement is true for 
all natural numbers, or for all members of an infinite 
sequence

• The simplest and most common form of mathematical 
induction proves that a statement holds for all natural 
numbers n and consists of two steps:

1. The basis: showing that the statement holds when n = 0.
2. The inductive step: showing that if the statement holds for n = k, it 

also holds for n = k + 1.
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Mathematical Induction

• This method works by:
1. First proving the statement is true for a starting value
2. Then proving that the process used to go from one value to the next 

is valid.
• If these are both proven, then any value can be obtained by 

performing the process repeatedly
• For example, suppose we have a long row of dominos 

standing, and we can be sure that:
1. The first domino will fall.
2. Whenever a domino falls, its next neighbor will also fall.
We can conclude that all dominos will fall.
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Mathematical Induction
• Suppose we wish to prove the following statement:

• Proof by induction:
• Check if it is true for n = 0
• Assume the statement is true for n = m

• Adding m+1 to both sides gives:
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Mathematical Induction
• Note that it has not been proven as true: we made the 

assumption that S(m) is true, and from that assumption we 
derived S(m+1). Symbolically, we have shown that:

• However, by induction, we may now conclude that the 
statement S(n) holds for all natural numbers n.

)1()( +→ mSmS

we have showed S(0)
we have showed that S(0)→S(1)
we have showed that S(1)→S(2)
etc.
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Generalization
• A common generalization is proving that a claim is true        

for all n ≥ c
1. Showing that the statement holds when n = c
2. Showing that if the statement holds for n = m ≥ c, it also holds         

for n = m+1

• This can be used for showing that n2 ≥ 10n for all n ≥ 10
1. For n==10, n2 = 10*10 = 10n
2. Assuming the statement holds for n = m ≥ 10, we get:
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Complete Induction
• Another form of mathematical induction is the             

complete-induction (also called strong-induction)
• In complete induction, the inductive hypothesis, instead of 

simply              is
• (we have a stronger inductive hypothesis, hence the name strong-induction)

• The complete induction steps are therefore:
1. Showing that the statement holds for n = 0 (or n = c)
2. Showing that if the statement holds for all c ≤ n ≤ m then the same 

statement also holds for n = m+1
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The game of Nin
• Rules:

• Two players throw a number of stones on the ground
• At each turn, a player removes one two or three stones
• The one to remove the last stones loses

• Proposition:
• The second player has a winning strategy iff the number of stones        

is 4k+1, otherwise the first player has a winning strategy

• Proof:
• Base case – there is only one stone, the second player wins (1=4k+1)
• Induction: Assume that P(n) is true for all 1≤n≤m and prove that P(n+1) is 

true as well
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The game of Nin
• We have four possible cases:

1. n+1 = 4k+1, We have already showed P(1) to be true, so we assume 
that n+1≥ 5. The first player can lift either one, two, or three stones, 
leaving either 4k,4(k−1)+3,4(k−1)+2 respectively. By the induction 
hypothesis, the person who plays next has a winning strategy.

2. n+1 = 4k, The first player can remove just three stones, leaving        
n = 4(k−1)+1. The strong induction hypothesis asserts that the 
second player loses.

3. n+1 = 4k+2, The first player can remove just one stone, leaving         
n = 4k + 1. The strong induction hypothesis asserts that the second 
player loses.

4. n+1 = 4k+3, The first player can remove two stones, leaving               
n = 4k + 1. The strong induction hypothesis asserts that the second 
player loses.
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Loop Invariants
• A loop invariant is statement that is true when a program 

enters a loop, remains true in each iteration of the body of 
the loop, and is still true when control exits the loop.

• Understanding loop invariants can help us analyze 
programs, check for errors, and derive programs from 
specifications.

• The loop invariant technique is a derived from the 
mathematical induction:

1. We first check that the statement is true when the loop is first
entered

2. We then verify that if the invariant is true after n times around the 
loop, it also true after n+1 times
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Loop Invariants
• public static int factorial(int num) {
• int P = 1;
• int C = 0;
• while (C < num) { // P = C! (our loop 

invariant)
• C++;
• P *= C;
• } // P = C! (our loop 

invariant)
• return (P);
• }
• Our loop invariant is true when we first enter and last leave 

the loop
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Insertion sort
• The outer loop of insertion sort is:

for (outer = 1; outer < a.length; outer++) {...}
• The invariant is that all the elements to the left of outer

are sorted with respect to one another
• For all i < outer, j < outer, if i < j then a[i] <= a[j]
• This does not mean they are all in their final correct place; the 

remaining array elements may need to be inserted
• When we increase outer, a[outer-1] becomes to its left; we 

must keep the invariant true by inserting a[outer-1] into its 
proper place

• This means: 
1. Finding the element’s proper place
2. Making room for the inserted element (by shifting over other 

elements)
3. Inserting the element
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Code for Insertion Sort
• public static void insertionSort(int[] array)
• int inner, outer;        
for(outer=1; outer<array.length; outer++) {

int temp = array[outer];
inner = outer;
while(inner>0 && array[inner-1] >= temp) {

array[inner] = array[inner - 1];
inner--;

}
• array[inner] = temp;

// Invariant: For all i < outer, j < outer, if i < j then a[i] ≤ a[j]
}

• }
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Insertion Sort - Loop Invariants
• The loop invariant is true before the loop is first executed
• If the loop invariant holds after n times around the loop, the 

inner loop makes sure we insert the n+1 element in place, 
therefore the loop invariant also true after n+1 times


