Tirgul 6

Heaps

Induction

DAST 2005

Heaps

« Abinary heap is a nearly complete binary tree stored in an
array object
« In a max heap, the value of each node 2 that of its children
(In a min heap, the value of each node < that of its children)
« Since the height of a heap containing n elements is ©(log(n))
the basic operations on a heap run in time that is proportional
to the heaps height and thus take O(log(n))

DAST 2005

Heaps

MAX~-HEAPIFY (A, i)

1 1 -~ LEFT (i)

2 r — RIGHT (i)

3 if 1 £ heap-size[A] and A[1] > A[i]
4 then largest — 1

5 else largest « 1

6 if r £ heap-size[A] and A[r] > A[largest]
7 then largest — r

8 if largest +# 1

9 then exchange A[i] .. A[largest]
10 MAX-HEAPIFY (A, largest)

DAST 2005

Heaps

HEAP-EXTRACT-MAX (A)

1 if heap-size[A] < 1

2 then error "heap underflow"

3 max ~ A[1l]

4 A[l] « A[heap-sizel[A]]

5 heap-sizel[A] ~ heap-sizel[A] - 1
6 MAX-HEAPIFY (A, 1)
7 return max

DAST 2005

Mathematical Induction

* Mathematical induction is a method of mathematical proof
typically used to establish that a given statement is true for
all natural numbers, or for all members of an infinite
sequence

* The simplest and most common form of mathematical
induction proves that a statement holds for all natural
numbers n and consists of two steps:

1. The basis: showing that the statement holds when n = 0.

2. The inductive step: showing that if the statement holds for n =k, it
also holds forn =k + 1.

DAST 2005

Mathematical Induction

* This method works by:
1. First proving the statement is true for a starting value
2. Then proving that the process used to go from one value to the next
is valid.
» If these are both proven, then any value can be obtained by
performing the process repeatedly
* For example, suppose we have a long row of dominos
standing, and we can be sure that:
1. The first domino will fall.
2. Whenever a domino falls, its next neighbor will also fall.
2 We can conclude that all dominos will fall.

DAST 2005

Mathematical Induction

« Suppose we wish to prove the following statement:
n(n+1)

S(n)y=0+1+2+..4+n-= 2

« Proof by induction: 0.1
« Check if it is true for n =0 S(O)ZTZO
« Assume the statement is true for n=m

S(m):0+1+m+m:m(”;7+1)
* Adding m+1 to both sides gives:
0+l+...+m+m+l:w+m+1
_m(m+1) 4 2m+1) _ (m+D)(m+2) _ S(m+1)

2 2

DAST 2005

Mathematical Induction

* Note that it has not been proven as true: we made the
assumption that S(m) is true, and from that assumption we
derived S(m+1). Symbolically, we have shown that:

S(m)— S(m+1)

* However, by induction, we may now conclude that the

statement S(n) holds for all natural numbers n.

we have showed S(0)

we have showed that S(0)—S(1)
we have showed that S(1)—S(2)
etc.

DAST 2005

Generalization

* A common generalization is proving that a claim is true
forallnzc
1. Showing that the statement holds when n = ¢
2. Showing that if the statement holds for n = m 2 ¢, it also holds
forn = m+l1
« This can be used for showing that n>> 10n for all n> 10
1. For n==10, n*=10*10=10n
2. Assuming the statement holds for n = m 2 10, we get:
(m+1)?=m* +2m+1210m+2m+1>10(m +1)
(m=10=2m+1>10)

DAST 2005

Complete Induction

* Another form of mathematical induction is the
complete-induction (also called strong-induction)
* In complete induction, the inductive hypothesis, instead of
simply H(n-1)is Vie {l,..n—1}H(i)
. (we have a stronger inductive hypothesis, hence the name strong-induction)
* The complete induction steps are therefore:
1. Showing that the statement holds for n =0 (or n=c)

2. Showing that if the statement holds for all ¢ < n < m then the same
statement also holds for n = m+1

DAST 2005

The game of Nin

* Rules:
« Two players throw a number of stones on the ground
At each turn, a player removes one two or three stones
« The one to remove the last stones loses
» Proposition:
« The second player has a winning strategy iff the number of stones
is 4k+1, otherwise the first player has a winning strategy
* Proof:
« Base case — there is only one stone, the second player wins (1=44+1)

« Induction: Assume that P(n) is true for all 1<n<m and prove that P(n+1) is
true as well

DAST 2005

The game of Nin

* We have four possible cases:

1. n+l=4k+1, We have already showed P(1) to be true, so we assume
that n+12 5. The first player can lift either one, two, or three stones,
leaving either 4k,4(k—1)+3,4(k—1)+2 respectively. By the induction
hypothesis, the person who plays next has a winning strategy.

2. n+l =4k, The first player can remove just three stones, leaving
n=4(k—1)+1. The strong induction hypothesis asserts that the
second player loses.

3. n+l =4k+2, The first player can remove just one stone, leaving
n =4k + 1. The strong induction hypothesis asserts that the second
player loses.

4. n+l =4k+3, The first player can remove two stones, leaving
n=4k + 1. The strong induction hypothesis asserts that the second
player loses.

DAST 2005

Loop Invariants

A loop invariant is statement that is true when a program
enters a loop, remains true in each iteration of the body of
the loop, and is still true when control exits the loop.
Understanding loop invariants can help us analyze
programs, check for errors, and derive programs from
specifications.

The loop invariant technique is a derived from the
mathematical induction:

We first check that the statement is true when the loop is first
entered

2. We then verify that if the invariant is true after n times around the

loop, it also true after n+1 times

DAST 2005

Loop Invariants

public static int factorial (int num) {

int P = 1;
int C = 0;
while (C < num) { // P = C! (our loop
invariant)
C++;
P *= C;
} // P = C! (our loop
invariant)

}

return (P);

Our loop invariant is true wheh*#e first enter and last leave

Insertion sort

The outer loop of insertion sort is:
for (outer = 1; outer < a.length; outer++) {...}
The invariant is that all the elements to the left of outer
are sorted with respect to one another
. For all i < outer, j < outer, if i < j then a[i] <= a[j]
* This does not mean they are all in their final correct place; the
remaining array elements may need to be inserted
* When we increase outer, a[outer-1] becomes to its left; we
must keep the invariant true by inserting a[outer-1] into its
proper place
* This means:
1. Finding the element’s proper place
2. Making room for the inserted element (by shifting over other
elements)

3. Inserting the element
DAST 2005

Code for Insertion Sort

public static void insertionSort(int[] array)
int inner, outer;

for (outer=1; outer<array.length; outer++) {
int temp = array[outer];
inner = outer;
while (inner>0 && array[inner-1] >= temp) {

array[inner] = array[inner - 1];
inner--;

}
array[inner] = temp;

// Invariant: For all i < outer, j < outer, if i < j then a[i] < a[j]

DAST 2005

Insertion Sort - Loop Invariants

The loop invariant is true before the loop is first executed

If the loop invariant holds after n times around the loop, the
inner loop makes sure we insert the n+1 element in place,
therefore the loop invariant also true after n+1 times

DAST 2005

