
1

DAST 2005

Tirgul 5

Radix Sort
ADT

Trees Using Arrays

DAST 2005

Radix Sort
• We have an input of n members in the range of [1..kd]

for some k and d
• We can represent the input using d digits numbers, 

where each digit has k possible values
• We use d iterations of a stable linear sorting 

(counting sort) for sorting the input, starting with the 
least significant digit

• The total running time is Θ(d⋅(n+k))

DAST 2005

Radix Sort
• Proof of correctness:
• We prove that the algorithm is correct by induction.

• The induction hypothesis is that after i steps, the numbers 
are sorted by i less significant digits.

• Inductively, step i+1 sorts by the (i+1)th least significant 
digit.

• If two numbers have the same (i+1)th least significant digit, the 
stability property of counting sort leaves them sorted by lower order 
digits

• and if they don't have the same value, the counting sort on step i+1 
puts them in the right order, so in either case the induction 
hypothesis holds. 



2

DAST 2005

Radix Sort
• Note that when d > log(n), Θ(d⋅(n+k)) > Θ(n⋅log(n)) 

and we will prefer merge-sort
• When k is small, we may simply prefer using 

counting-sort

Summary:
• The decision of which sorting algorithm to use should 

be taken after considering the size and range of the 
input (and other factors we didn’t mention, like space 
complexity…)

DAST 2005

ADT

• An Abstract Data Type, or ADT, is the specification of 
a set of data and a set of operations that can be 
performed on the data.

• It is abstract in the sense that the actual 
implementation is not defined and does not affect 
the behavior of the ADT.

• In a computer programs (Java), the ADT is 
represented by an interface, which shields the 
implementation details.

DAST 2005

List ADT
• So far we have not separated the list interface from 

its implementation

• In fact the list is an ADT that can be implemented in 
various ways

Head data data data



3

DAST 2005

List ADT
• Our definition of the list ADT is therefore:

• A data structure that may hold any number of elements
• We want to allow the following operations:

• insert a new element
• Find an element
• Remove an element
• Iterate over all elements

• Other optional operations are:
• Sort the elements
• Insert in-place
• etc.

DAST 2005

List ADT
• For example, we may implement the list ADT using 

an array:

or using a double array:
0 4 5 6 7 8 91 2 3
da
ta

nex
t

da
ta

nex
t

da
ta

nex
t
da
ta

nex
t

da
ta

nex
t

0 4 5 6 7 8 91 2 3

D

N

orange apple banana olive date Pome-
granate

fig

2 4 1 7 6 35

NULLNULLNULL

DAST 2005

Queue ADT
• A queue is a first-in-first-out (FIFO) sequential data 

structure in which elements are added (enqueued) at 
one end and are removed (dequeued) from the other 
end

• In the queue ADT we have the following operations:
• initialization
• enqueue– add an element to the end of the queue
• dequeue– remove an element from the head of the queue
• (optionally) count the number of elements in the queue
• (optionally) view the first element in the queue



4

DAST 2005

Stack ADT
• Another useful ADT is the stack, a last-in-first-out 

(LIFO) sequential data structure in which elements 
are added (pushed) at one end and are removed 
(popped) from the same end

• In the stack ADT we have the following operations:
• Initialization
• push - add an element to the top of the stack
• pop – remove an element from the top of the stack
• (optionally) count the number of elements in the stack
• (optionally) top - view the top element in the stack

DAST 2005

Trees Using Arrays
• So far our (binary) trees looked like this: 

DAST 2005

Trees Using Arrays
• Trees, like lists, can be implemented using arrays
• In the general case we will have something like this:

0 4 5 6 7 8 91 2 3

D

L

R



5

DAST 2005

Trees Using Arrays
• Many times we want our trees to be complete
• For a complete tree, the implementation is much 

more efficient:

0 4 51 2 3
roo
t

0

21

3 4 5

lef
t
rig
ht

DAST 2005

Trees Using Arrays
• Each node has (up to) 2 children, left and right
• If the tree is complete, we can position the left child 

of node i at 2i+1 and its right child at 2i+2
• The parent of node i is located at floor((i -1)/2)
• We don’t need pointers, we can access each 

element in O(1)
• What happens if the tree is not complete?


