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Radix Sort
• We have an input of n members in the range of [1..kd]

for some k and d
• We can represent the input using d digits numbers, 

where each digit has k possible values
• We use d iterations of a stable linear sorting 

(counting sort) for sorting the input, starting with the 
least significant digit

• The total running time is Θ(d⋅(n+k))
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Radix Sort
• Proof of correctness:
• We prove that the algorithm is correct by induction.

• The induction hypothesis is that after i steps, the numbers 
are sorted by i less significant digits.

• Inductively, step i+1 sorts by the (i+1)th least significant 
digit.

• If two numbers have the same (i+1)th least significant digit, the 
stability property of counting sort leaves them sorted by lower order 
digits

• and if they don't have the same value, the counting sort on step i+1 
puts them in the right order, so in either case the induction 
hypothesis holds. 
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Radix Sort
• Note that when d > log(n), Θ(d⋅(n+k)) > Θ(n⋅log(n)) 

and we will prefer merge-sort
• When k is small, we may simply prefer using 

counting-sort

Summary:
• The decision of which sorting algorithm to use should 

be taken after considering the size and range of the 
input (and other factors we didn’t mention, like space 
complexity…)
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ADT

• An Abstract Data Type, or ADT, is the specification of 
a set of data and a set of operations that can be 
performed on the data.

• It is abstract in the sense that the actual 
implementation is not defined and does not affect 
the behavior of the ADT.

• In a computer programs (Java), the ADT is 
represented by an interface, which shields the 
implementation details.
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List ADT
• So far we have not separated the list interface from 

its implementation

• In fact the list is an ADT that can be implemented in 
various ways

Head data data data
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List ADT
• Our definition of the list ADT is therefore:

• A data structure that may hold any number of elements
• We want to allow the following operations:

• insert a new element
• Find an element
• Remove an element
• Iterate over all elements

• Other optional operations are:
• Sort the elements
• Insert in-place
• etc.
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List ADT
• For example, we may implement the list ADT using 

an array:

or using a double array:
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Queue ADT
• A queue is a first-in-first-out (FIFO) sequential data 

structure in which elements are added (enqueued) at 
one end and are removed (dequeued) from the other 
end

• In the queue ADT we have the following operations:
• initialization
• enqueue– add an element to the end of the queue
• dequeue– remove an element from the head of the queue
• (optionally) count the number of elements in the queue
• (optionally) view the first element in the queue
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Stack ADT
• Another useful ADT is the stack, a last-in-first-out 

(LIFO) sequential data structure in which elements 
are added (pushed) at one end and are removed 
(popped) from the same end

• In the stack ADT we have the following operations:
• Initialization
• push - add an element to the top of the stack
• pop – remove an element from the top of the stack
• (optionally) count the number of elements in the stack
• (optionally) top - view the top element in the stack
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Trees Using Arrays
• So far our (binary) trees looked like this: 

DAST 2005

Trees Using Arrays
• Trees, like lists, can be implemented using arrays
• In the general case we will have something like this:
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Trees Using Arrays
• Many times we want our trees to be complete
• For a complete tree, the implementation is much 

more efficient:
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Trees Using Arrays
• Each node has (up to) 2 children, left and right
• If the tree is complete, we can position the left child 

of node i at 2i+1 and its right child at 2i+2
• The parent of node i is located at floor((i -1)/2)
• We don’t need pointers, we can access each 

element in O(1)
• What happens if the tree is not complete?


