
1

DAST 2005

Tirgul 4

Randomized & Average
Complexity

DAST 2005

Selection

• The selection problem is defined as follows:
• Input: An array A[1..n] of elements in an arbitrary

(random) order and an index k
• Output: The kth smallest element of A

• When k==1, we are looking for the minimum
• When k==n, we are looking for the maximum
• When k==n/2 we are looking for the median

DAST 2005

Quick Select
• The algorithm idea is very simple:
1. We choose a pivot and split the array around

it (like in quicksort)
2. The desired element is now on one side of

the pivot (we know, which side) and we
recursively apply the procedure on that side

2

DAST 2005

Quick Select
• QuickSelect(A,p,r,i)

1. if p=r
2. return A[p]
3. q←RandomizedPartition(A,p,r)
4. k← q –p+1
5. if i≤k
6. then return QuickSelect(A,p,q,i)
7. else return QuickSelect(A,q+1,r,i)

DAST 2005

Quick Select
• What is the worst case running time of the

algorithm?
• In the worst case, the partition always partitions the

input to n-1 and 1, and the kth element is always in
the larger partition

• The recurrence equation in that case is:
• T(n) = T(n-1) + n = O(n2)
• Since the algorithm is random (we have a random

partition), no particular input will yield that running
time

DAST 2005

Quick Select
• Randomized complexity analysis:

nkT
n

nT
n

k
+= ∑

−

=

1

1
)(1)(

Let us assume that T(k)<ck for some k

cnnnc

nnn
n
cnk

n
cnck

n
nT

n

k

n

k

≤+−=

+
−

=+=+= ∑∑
−

=

−

=

)1(
2

2
)1(1)(

1

1

1

1

For c > 3

3

DAST 2005

Insertion Sort – Average
complexity

• We have seen that the worst case complexity of insertion sort
is O(n2), but what is its average complexity?

• To do that we need to average over all the possible insertion
in each step of the algorithm

• We define Ei as the average number of comparisons needed
for inserting of the ith element

• When inserting the ith element, we already have i-1 sorted
elements, so on an average we get

2
11

1

−
== ∑

=

ik
i

E
i

k
i

DAST 2005

Insertion Sort – Average
complexity

• The total complexity of the algorithm is the
combined complexity of all the insertions,
therefore:

• So the average complexity is polynomial as
well

)(
24

)1(1
2
1

2
1)(2

1 111
nOnnniiEnT

n

i

n

i

n

i

n

i
i =−

−
=








−=

−
== ∑ ∑∑∑

= ===

DAST 2005

Insertion Sort – Average
complexity

• The only thing we need to justify is why the ith

element has an equal probability to be placed
in each of the i possible locations

• But since the elements are a random
permutation, the first i elements are also a
random permutation

