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Asymptotic Analysis
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Asymptotic Analysis

• Previously in asymptotic analysis:
• Big O
• Big Ω
• Big Θ
• Recurrence trees

• Today:
• More recurrence
• Summation

DAST 2005

Recurrence
• Last week we looked at recurrence trees:

• There are two other popular approaches:
• Guess the asymptotic complexity and prove by induction
• The Master theorem (not today)
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Recurrence
back to Hanoi

• The input of the problem is: s, t, m, k
• The size of the input is k+3 ~ k (the number of disks).
• Denote the size of the problem k=n.
• Reminder:

• What is the running time of the “Towers of Hanoi”?

H(s,t,m,k) {
if (k > 1) {

H(s,m,t,k-1)
moveDisk(s,t)
H(m,t,s,k-1)

} else { moveDisk(s,t)}
}
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Recurrences
Guess and prove by induction

• Denote the run time of a recursive call to input with size n
as T(n):
• H(s,m,t,k-1) takes T(n-1) time
• moveDisk(s,t) takes T(1) time
• H(m,t,s,k-1) takes T(n-1) time

• We can express the running-time as a recurrence:
T(n) = 2T(n-1) + 1
T(1) = 1

• How do we solve this ?
• One method to solve recurrence is guess and prove by 

induction.
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T(n)= 2T(n-1) + 1
= 2[2T(n-2)+1] + 1 = 4T(n-2) + 3
= 4[2T(n-3)+1] + 3 = 8T(n-3) + 7 ...

When repeating k times we get:
T(n) = 2kT(n-k) + (2k – 1)

Now take k=n-1. We’ll get:
T(n) = 2n-1T(1) + 2n-1 – 1 = 2n – 1

Step 1: “guessing” the solution
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• If we guessed right, it will be easy to prove by 
induction that T(n) = 2n – 1

• For n=1:  T(1)= 2-1=1 (and indeed T(1)=1)
• Suppose T(n-1) = 2n-1 - 1. Then:

T(n) = 2T(n-1) + 1 = 2(2n-1 - 1) + 1
= 2n -2 + 1 = 2n -1

• So we conclude that:   T(n) = O(2n)

Step 2: proving by induction
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T(n) = 2 T(n/2) + 1
T(1) = 1
T(n) = 2T(n/2) + 1

= 2 (2T(n/4) + 1) + 1 = 4T(n/4) + 3
= 4 (2T(n/8) + 1) + 3 = 8T(n/8) + 7

• We get: T(n) = k T(n/k)+(k-1)
• For k=n we get T(n)= n T(1)+n-1=2n-1

Now proving by induction is very simple.
T(n) = O(?)

• Can you think an algorithm that behaves like that?

Recurrence: Another Example
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Recurrence: Another Example
• Another way: “guess” right away T(n) <= c n – b 

(for some b and c we don’t know yet), and try to 
prove by induction:

• The base case: 
For n=1: T(1)=c-b, which is true when c-b=1

• The induction step:
Assume T(n/2)=c(n/2)-b and prove for T(n).
T(n) <= 2 (c(n/2) - b) + 1 = c n - 2b + 1 <= c n - b
(the last step is true if b>=1).

• Conclusion: T(n) = O(n)
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• Let us prove by induction that 2n = O(n) (Wrong!)
• For n=1, 21=2=O(1) 
• Assume true for n, we will prove for n+1:

T(n+1) = 2n+1 = 2*2n = 2T(n) = 2*O(n) = O(n)
• What did we do wrong?
• Remember that the big-O notation is only a short 

hand for a definition. We should use the full definition

Common mistakes
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• Let us use the full definition
• We want to prove that there exist c and n0,                        

such that for every n > n0 it holds that 2n ≤ cn
• The induction step will be:

T(n+1) = 2n+1 = 2*2n ≤ 2cn
• But it is not true that 2cn ≤ c(n+1)

Common mistakes
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• Find the asymptotic upper bound of the sum  

• note how we “got rid” of the integer rounding
• Is the sum also Ω(n)?

(yes)

Summations
(from Cormen, ex. 3.2-2., page 52)
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• Find an asymptotic upper bound for the following expression:
• where r is a constant

• (remember that you already saw the case of r=1 in class)

• Note that
• Note that when a series increases polynomially the upper 

bound would be the last element but with an exponent 
increased by one. 

• Can we find a tighter bound?

Summations (example 2)
(Cormen, ex. 3.1-a., page 52)
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• A good way of finding tight bound is finding a lower bound 
that equals the upper bound.

• In this case we will find a lower bound for an even n and a 
lower bound for an odd n.

• For an even n:

• For an odd n:

Example 2 (Cont.)
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Example 2 (Cont.)

• Thus:                                  
so our upper bound was tight!

• Note that proving that                                   is not enough!
(why?)
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