Tirgul 2

(some more)

Asymptotic Analysis

DAST 2005

Asymptotic Analysis

* Previously in asymptotic analysis:
« BigO
« Big Q
« Big®
* Recurrence trees
» Today:
» More recurrence
* Summation

DAST 2005

Recurrence

« Last week we looked at recurrence trees:

fle®)) ke (flgm)

f&’(m) e fg7m)

« There are two other popular approaches:
+ Guess the asymptotic complexity and prove by induction
* The Master theorem (not today)

DAST 2005

Recurrence
back to Hanoi

The input of the problem is: s, t, m, k
The size of the input is k+3 ~ k (the number of disks).
Denote the size of the problem k=n.
Reminder: H(s,t,m,k) {
if (k > 1) {
H(s,m,t, k-1)
moveDisk (s, t)
H(m,t,s, k-1)
} else { moveDisk(s,t)}

}
What is the running time of the “Towers of Hanoi"?

DAST 2005

Recurrences
Guess and prove by induction
Denote the run time of a recursive call to input with size n
as T(n):
« H(s,m,t, k-1) takes 7T(n-1) time
- moveDisk (s, t) takes 7(1) time
*« H(m,t,s, k-1) takes T(n-1) time
We can express the running-time as a recurrence:
T(n) =2T(n-1) + 1
(1) =1
How do we solve this ?
One method to solve recurrence is guess and prove by
induction.

DAST 2005

Step 1: “guessing” the solution

T(n)=2T(n-1) + 1
=2[2T(n-2)+1]+ 1 =4T(n-2) + 3
= 42T (n-3)+1]+3 =8T(n-3) + 7 ...

When repeating & times we get:
T(n) = 2FT(n-k) + (2¢ - 1)

Now take k=n-1. We’'ll get:

T(n) =2m1T(1) + 201 — 1 =211

DAST 2005

Step 2: proving by induction

If we guessed right, it will be easy to prove by
induction that T(n) =27 -1
For n=1: T(1)=2-1=1 (and indeed T(1)=1)
Suppose T(n-1) =271 - 1. Then:
T(n) =2T(n-1) + 1 =22 - 1) + 1
=212+1=2"-1

So we conclude that: T(n) = O(2")

DAST 2005

Recurrence: Another Example

T(n)=2T(nR2) +1
=1
T(n)=2Tn2) + 1
=2 2T(n/A) + 1) + 1 =4T(n/4) + 3
=4 2T(nMR) + 1) +3 =8T(n/B) +7
We get: T(n) = k T(n/k)+(k-1)
For k=n we get T(n)= n T(1)+n-1=2n-1
Now proving by induction is very simple.
T(n) = 0(7)
Can you think an algorithm that behaves like that?

DAST 2005

Recurrence: Another Example

Another way: “guess” right away T(n) <=cn—-5b
(for some b and ¢ we don’t know yet), and try to
prove by induction:

The base case:
For n=1: T(1)=c-b, which is true when c-b=1
The induction step:

Assume T(n/2)=c(n/2)-b and prove for T(n).
T(n) <=2(c(m2)-b)+1=cn-2b+1<=cn-b
(the last step is true if b>=1).

Conclusion: T(n) = O(n)

DAST 2005

Common mistakes

* Let us prove by induction that 2" = O(n) (Wrong!)
e Forn=1,2'=2=0(1) v
» Assume true for n, we will prove for n+1:
T(n+1) =21 =2%2n = 2T(n) = 2*O(n) = O(n)
* What did we do wrong?

* Remember that the big-O notation is only a short
hand for a definition. We should use the full definition

DAST 2005

Common mistakes

* Let us use the full definition

* We want to prove that there exist ¢ and n,,
such that for every n > n, it holds that 2 < cn

» The induction step will be:
T(n+1)=2m1=2%21<2cn
* But it is not true that 2¢n < ¢(n+1)

DAST 2005

Summations
(from Cormen, ex. 3.2-2., page 52)

« Find the asymptotic upper bound of the sum
log() |

o1 eTns2 e nralen8]e o+ 1) = > (n/zkw

‘g‘[n/zkwﬁ‘gw(’f/zk+1):“§”("/2k)+ %0

=) k=0 k=0 k=0

< (log n+l)+n21/2k =1+logn+2n=0(n)
k=0

» note how we “got rid” of the integer rounding
¢ Is the sum also Q(n)?
(ves)

DAST 2005

Summations (example 2)
(Cormen, ex. 3.1-a., page 52)

Find an asymptotic upper bound for the following expression:
f(n)= X k" whererisaconstant
k=1

(remember that you already saw the case of r=1 in class)
f)=1"+2"+3 +..+n <n-n" =n"=0m")

Notethat n-n" # O(n")

Note that when a series increases polynomially the upper
bound would be the last element but with an exponent
increased by one.

Can we find a tighter bound?

DAST 2005

Example 2 (Cont.)

A good way of finding tight bound is finding a lower bound
that equals the upper bound.

In this case we will find a lower bound for an even n and a
lower bound for an odd n.
For an even n:

r+l
F) =1 42" +3 4ok’ 2(1n/2)-(n/2) =;H1 =%n”l)
n=1Y (n+1Y _n—-1(nY 1

. n)> . > —| = n -(n—1

Foranodd n: /(1) (5 j(5) 5 [zj > (n—1)
. n | -
>—n-—=——n"=Q(n"”"
S S = 0™)

DAST 2005

Example 2 (Cont.)

Thus: f(n)=0O(n""")

so our upper bound was tight!

Note that proving that f'(n) # O(n") is not enough!
(why?)

DAST 2005

