Tirgul 1

Asymptotic Analysis

DAST 2005

Asymptotic Analysis

» Motivation: Suppose you want to evaluate
two programs according to their run-time for
inputs of size n. The first has run-time of:

0.1Nn* + logn+7
and the second has run-time of: 5
1000 X +200+/n + (logn +239)° +3859
For small inputs, it doesn’t matter, both

programs will finish before you notice. What
about (really) large inputs?

DAST 2005

Asymptotic Analysis

|

Some of the —
functionsyou | ,/
might meet: /

DAST 2005

Big O

Definition:

f(n) =0(g(n))

if there exist constants
¢ > 0and n, such that

forall n>n,,

f(n) £c:g(n)

"0 i = 0t

DAST 2005

Big O

* In other words, g(n) bounds f(n) from above
(for large n’s) up to a constant.

* Examples:

1.

a s w b

1,000,000 = O(1)
0.5n =0O(n)
1,000n =0(n)
n =0
n? 1 OM)

(why?)

DAST 2005

Big Omega (?)

Definition:

f(n)

=Wg(n)
if there exist constants
¢>0 and n, such that for

all n>n,

f(n)® c:g(n)

'; n
O f(m) = Qg(m)

DAST 2005

Big Omega (?)

* In other words, g(n) bounds f(n) from below
(for large n’s) up to a constant.

* Examples:

1. 05n =7?(n)
2. 1,000n =?(n)
3. n? =7?(n)
4. n L2 (why?)
Big Theta (T)
Definition:

f(n)=C(g(n) if
f(n)=0(g(n)) and
f(n) =W(g(n))
In other words, there
exist constants c;, ¢,
and n, such that for all |
n>n, " fim = 0g(n) .

0£cg(n) £f(n)£c,xg(n)

DAST 2005

Big Theta (T)

+ In other words, g(n) is a tight estimate of
f(n) (in asymptotic terms).
* Examples:
1. 05n =T (n)
2. 1,000n =T ()
3. n? L' Tm
4. n 1 T

DAST 2005

Example 1

(question 2-4-e. in Cormen)

Question: is the following claim true?
claim: if f(n)3a >0 (for n>ny) then f (N) = O((f (n))z)
Answer: Yes.
Proof: Take C=l/a. Thusfor n>n,,

f(n)=ai>a xf (n) Eain (n)xf (n) =cxf (n)?

Note: if there is no such afor f(n) then the claim is not true:
take for example f(N) = 1h. For any constant C, take N>C
. [9 _ Cc _ 2

andso: f(n)> Ff (n) = = ¢ xf (n)

DAST 2005

Example 2

(question 2-4-d. in Cormen)
Does f(n) =0 (g(n)imply 2'™ =0 (20)

Answer: Na
Forexample, f(Nn) =2n, g(n) =n
Then, c2and f(n)£2>g(n)P f(n) =0 (g(n)
but, for any constant ¢, we can choose n such that:
22n=2omn>Cign
2f M1 (29(”))

SO:

DAST 2005

Recurrence

» So far we only saw sequential functions:

« we could use summation to analyze the
algorithm's behavior

» What happens when we have a recursive
method?

» We can no longer analyze the algorithm
simply by summing the basic operations ...

DAST 2005

Recurrence — Merge sort

MergeSort (a) { » We start with a problem of
| = MergeSort(left half size n.
of a) P
r = MergeSort(right half We divide it into two sub-
of a) problems of size n/2 and solve
Merge(a,l,r); them.
} » We then spend some more
Merge(a,l,r) { time in constructing a solution
Left_ix=0; right_ix=0; from the partial solutions

For i=1:length(l+r) do
if ..

DAST 2005

Recurrence — Merge sort

In each node, except for
the leafs, we only “spend
time” at splitting the
problem to sub-problems
and merging the
solutions. log(n) (n/4)] r!/A] [n/4 | r)/A]

The work at each level of
the tree is O(N)

We have log(n) such
levels

DAST 2005

Recurrence — Towers of Hanoi

F-Y « We start with a problem
of size n.

« We divide it into two sub-
problems of size n-1 and

|
Eﬂl

Hanoi (s, t, mk)

if (k>1) { solve them.

Hs, mt, k-1) « We then spend some
noveDi sk(s,t) . . .
Hmt,s, k1) more time in constructing

} else { a solution from the partial

noveD sk(s,t) .
} solutions

DAST 2005

Recurrence — Merge sort

In each node (including
the leafs) we make a
constant amount of work

Q. How much work
should we do?

A 201

n{ln2) (n-2)[n2] [n-2

DAST 2005

Useful to know

* When we talk of asymptotic analysis we refer
to large ns.

« In “real life” the constant c (the one we used to
ignore) may be important.

» For example: fast sorting algorithms use
quicksort but when the sub-problems are small
enough they use bubblesort.

DAST 2005

