
1

DAST 2005

Tirgul 13

(and more)

sample questions

DAST 2005

(back to previous week)
Q. We’ve seen that solving the shortest paths problem

requires O(VE) time using the Belman-Ford algorithm
or O((V+E)logV) using the Dijkstra algorithm (might be

even O(VlogV+E) when using Fibonacci heaps). Suppose you
know that your graph is a DAG, can you do better?

6 ∞
5

2

4

y

u v
11

4

x

DAST 2005

A. Yep, the algorithm is:
Dag-Shortest-Paths(G,w,s)
1. topologically sort the vertices of G
2. Initialize-Single-Source(G,s)
3. For each vertex u (taken in topologically

sorted order)
4. For each vertex v ∈ Adj[u]
5. Relax(u,v,w)

This procedure runs in Θ(V+E)

Θ(|V+E|)

Θ(|V|)

(Θ(|V|))
Θ(|E|)

2

DAST 2005

Proof outline
Triangle Inequality:

For all (u, v) ∈ E, we have δ(s, v) ≤ δ(s, u) + w(u, v) .

Lower-bound Property
Always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it never changes.

No-path Property
If δ(s, v)=∞ , then d[v]=∞ always.

Convergence Property
If s u → v is a shortest path, d [u] = δ(s, u) , and we call
RELAX(u,v,w), then d[v] = δ(s, v) afterward.

Path Relaxation Property
Let p = v0, v1, . . . , vk be a shortest path from s = v0 to vk.
If we relax, in order, (v0, v1), (v1, v2), . . . , (vk-1, vk), even intermixed
with other relaxations, then d[v k] = δ(s, v k).

DAST 2005

Proof
Triangle Inequality:

For all (u, v) ∈ E, we have δ(s, v) ≤ δ(s, u) + w(u, v).

Proof:
Weight of shortest path s v is ≤ weight of any other path
from s to v.
Path s u → v is a path s v , and if we use a shortest
path s u, its weight is δ(s, u) + w(u, v).

DAST 2005

Proof
Lower-bound Property:

We always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it
never changes.

Proof:
Initially true.
Suppose there exists a vertex such that d[v] < δ(s, v).
Without loss of generality, v is first vertex for which this
happens. Let u be the vertex that causes d[v] to change.
Then d[v] = d[u] + w(u, v).
So, d[v] < δ(s, v) ≤ δ(s, u) + w(u, v) (triangle inequality)
≤ d[u] + w(u, v) (v is first violation) ⇒ d[v] < d[u] + w(u, v).
Contradicts d[v] = d[u] + w(u, v).
Once d[v] reaches δ(s, v), it never goes lower. It never goes up,
since relaxations only lower shortest-path estimates.

3

DAST 2005

Proof

No-path Property:
If δ(s, v)=∞, then d[v]=∞ always.

Proof:
d[v] ≥ δ(s, v)=∞ ⇒ d[v]=∞.

DAST 2005

Proof
Convergence Property

If s u → v is a shortest path, d [u] = δ(s, u), and we call
RELAX(u,v,w), then d [v] = δ(s, v) afterward.

Proof
After relaxation:
d [v] ≤ d [u] + w(u, v) (RELAX code)

= δ(s, u) + w(u, v)
= δ(s, v)

Since d [v] ≥ δ(s, v), must have d [v] = δ(s, v).

DAST 2005

Proof

Path Relaxation Property
Let p = v0, v1, . . . , vk be a shortest path from s = v0 to vk .
If we relax, in order, (v0, v1), (v1, v2), . . . , (vk-1, vk), even
intermixed with other relaxations, then d [vk] = δ(s, vk).

Proof
Induction to show that d[vi] = δ(s, vi) after (vi-1, vi) is relaxed.

Basis: i = 0. Initially, d [v0] = 0 = δ(s, v0) = δ(s, s).

Inductive step:
Assume d[vi-1] = δ(s, vi-1).
Relax (vi-1, vi).
By convergence property, d [vi] = δ(s, vi) afterward
and d [vi] never changes.

4

DAST 2005

Hashing
Consider a hash table of size 13 with hash function
h(key) = key mod 13. Insert following items, in the given order,
into an initially empty table:

46, 11, 42, 29, 36, 22, 20, 3, 10

Draw the resulting table for each of the four collision resolution
strategies:

1. linear probing

2. quadratic probing

3. double hashing with h2(key) = 5 – (key mod 5)

4. chaining

DAST 2005

Hashing

Linear probing: h(k,i) = (h’(k)+i)mod(m))
46, 11, 42, 29, 36, 22, 20, 3, 10

42 1029 3 46 20 22 36 11

0 1 2 3 124 5 6 7 8 9 10 11

Suppose we have a hash table with m entries with a primary
clustering problem, we have m/2 members in the table, all
forming one primary cluster, what is the average complexity
of inserting a new member?

DAST 2005

Hashing

Quadratic probing: h(k,i) = (h’(k)+c1i+c2i2)mod(m))
46, 11, 42, 29, 36, 22, 20, 3, 10

(c1 = c2 = 1)

20 3 42 1029 46 22 36 11

0 1 2 3 124 5 6 7 8 9 10 11

5

DAST 2005

Hashing
Double hashing with h2(key) = 5 – (key mod 5) :

46, 11, 42, 29, 36, 22, 20, 3, 10

42 29 46 11

0 1 2 3 124 5 6 7 8 9 10 11

3622 20310

* Note that although the range of h1 is [0..m-1], the range of h2
. is [1..m-1], why?

