Tirgul 13

(and more) sample questions

DAST 2005

Proof outline

Triangle Inequality: For all $(u, v) \in E$, we have $\delta(s, v) \le \delta(s, u) + w(u, v)$.

Lower-bound Property

Always have $d[v] \ge \delta(s, v)$ for all v. Once $d[v] = \delta(s, v)$, it never changes.

No-path Property If $\delta(s, v) = \infty$, then $d[v] = \infty$ always.

Convergence Property If $s \frown u \to v$ is a shortest path, $d[u] = \delta(s, u)$, and we call RELAX(u,v,w), then $d[v] = \delta(s, v)$ afterward.

Path Relaxation Property

Let p = v0, v1, ..., vk be a shortest path from s = v0 to vk. If we relax, *in order*, (v0, v1), (v1, v2), ..., (vk-1, vk), even intermixed with other relaxations, then $d[v k] = \delta(s, v k)$.

DAST 2005

<u>Proof</u>

Triangle Inequality:

For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Proof:

Weight of shortest path $s \sim v$ is \leq weight of any other path from s to v.

Path $s \frown u \to v$ is a path $s \frown v$, and if we use a shortest path $s \frown u$, its weight is $\delta(s, u) + w(u, v)$.

DAST 2005

<u>Proof</u>

Lower-bound Property: We always have $d[v] \ge \delta(s, v)$ for all v. Once $d[v] = \delta(s, v)$, it never changes. Proof: Initially true. Suppose there exists a vertex such that $d[v] < \delta(s, v)$. Without loss of generality, v is first vertex for which this happens. Let u be the vertex that causes d[v] to change. Then d[v] = d[u] + w(u, v). So, $d[v] < \delta(s, v) \le \delta(s, u) + w(u, v)$ (triangle inequality) $\le d[u] + w(u, v)$ (v is first violation) $\Rightarrow d[v] < d[u] + w(u, v)$. Contradicts d[v] = d[u] + w(u, v). Once d[v] reaches $\delta(s, v)$, it never goes lower. It never goes up, since relaxations only lower shortest-path estimates. DAST 2005

Proof

No-path Property:

If $\delta(s, v) = \infty$, then $d[v] = \infty$ always.

Proof:

 $d[v] \geq \delta(s, v) = \infty \implies d[v] = \infty.$

DAST 2005

<u>Proof</u>

Convergence Property

If $s \frown u \to v$ is a shortest path, $d[u] = \delta(s, u)$, and we call RELAX(u, v, w), then $d[v] = \delta(s, v)$ afterward.

Proof

After relaxation:

 $\begin{array}{ll} d\left[v\right] \leq d\left[u\right] + w(u, v) & (\mathsf{RELAX \ code}) \\ &= & \delta(s, u) + w(u, v) \\ &= & \delta(s, v) \\ & \text{Since } d\left[v\right] \geq \delta(s, v), & \text{must have } d\left[v\right] = \delta(s, v). \end{array}$

DAST 2005

Proof

Path Relaxation Property

Let $p = v_0, v_1, \ldots, v_k$ be a shortest path from $s = v_0$ to v_k . If we relax, *in order*, $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then $d[v_k] = \overline{o}(s, v_k)$.

Proof

Induction to show that $d[v_i] = \delta(s, v_i)$ after (v_{i-1}, v_i) is relaxed.

Basis: i = 0. Initially, $d[v_0] = 0 = \delta(s, v_0) = \delta(s, s)$.

Inductive step:

Assume $d[v_{i-1}] = \delta(s, v_{i-1})$. Relax (v_{i-1}, v_i). By convergence property, $d[v_i] = \delta(s, v_i)$ afterward and $d[v_i]$ never changes.

Hashing

Consider a hash table of size 13 with hash function h(key) = key mod 13. Insert following items, in the given order, into an initially empty table:

46, 11, 42, 29, 36, 22, 20, 3, 10

Draw the resulting table for each of the four collision resolution strategies:

- 1. linear probing
- 2. quadratic probing
- 3. double hashing with $h2(key) = 5 (key \mod 5)$
- 4. chaining

DAST 2005

Hashing

Double hashing with $h_2(\text{key}) = 5 - (\text{key mod } 5)$:

* Note that although the range of h_1 is [0..m-1], the range of h_2 is [1..m-1], why?

