
1

DAST 2005

Tirgul 12

(and more)

sample questions

DAST 2005

Q. We’ve seen that solving the shortest paths problem
requires O(VE) time using the Belman-Ford algorithm
or O((V+E)logV) using the Dijkstra algorithm (might be

even O(VlogV+E) when using Fibonacci heaps). Suppose you
know that your graph is a DAG, can you do better?

6 ∞
5

2

4

y

u v
11

4

x

DAST 2005

A. Yep, the algorithm is:
Dag-Shortest-Paths(G,w,s)
1. topologically sort the vertices of G
2. Initialize-Single-Source(G,s)
3. For each vertex u (taken in topologically

sorted order)
4. For each vertex v ∈ Adj[u]
5. Relax(u,v,w)

This procedure runs in Θ(V+E)

Θ(|V+E|)

Θ(|V|)

(Θ(|V|))
Θ(|E|)

2

DAST 2005

We first run topological sort (O(|V+E|))
Reminder:
A topological sort takes a directed acyclic graph, or
DAG, and returns an ordered list of the vertices such
that if there is an edge (v,u) in the graph, then v will
appear before u in the list.
If there are a few paths from s to v, we will relax all
the vertices along these paths before calculating the
distance from v → When we relax the distances of all
the neighbors of v, the distance to v is the shortest
path (since we relax vertices in topologically ordered manner,
we will relax all vertices that have incoming edges to v, before
relaxing all those reachable from v)

DAST 2005

(a bit) More formally:
We want to prove: The algorithm calculates the shortest
paths between the source vertex and all other vertices

♦ The proof of correctness is by induction on the length of the
number of nodes on the shortest path between s and a node
v: p=(v0,..,vk) with v0 = s, vk = v.
♦ We run through the nodes in topological order: the edges of
p are relaxed in the order of the path (we did not have this
property in Bellman-Ford).
♦ Assuming inductively d[vi-1]=δ[s, vi-1] when the for loop
reached vi-1 the relaxation of (vi-1, vi) has the effect of setting
d[vi]=D[s, vi].
♦ Initially d[v0]=0=D[s,s].

DAST 2005

Modified MST
Your friend suggests an improved recursive MST algorithm:
Given a graph G = (V,E), partition the set V of vertices into two
sets V1 and V2 such that | V1 | and | V2| differ by at most 1. Let
E1 be the set of edges that are incident only on vertices in V1 ,
and let E2 be the set of edges that are incident only on
vertices in V2. Recursively solve a minimum-spanning tree
problem on each of the two subgraphs G1 = (V1,E1) and G2 =
(V2,E2). Finally, select the minimum-weight edge in E that
crosses the cut (V1; V2), and use this edge to unite the
resulting two minimum spanning trees into a single spanning
tree.
Will it work?

3

DAST 2005

Modified MST
No, it won’t work, counter example:

a
b

c

1

2

3

DAST 2005

Most Reliable path
Assume you are given a directed graph on which
each edge has an associated value which is a
real number in the range 0 ≤ ≤ 1 that represents the
reliability of a communication channel from vertex u to vertex
v. Interpret to be the probability that the channel from u
to v will not fail, and assume that these probabilities are
independent. Give an efficient algorithm to find the most
reliable path between two given vertices.

Evu ∈),(
),(EVG =

),(vuR
),(vuR

),(vuR

DAST 2005

Most Reliable path
1. Modify the initialization routine to initialize the reliability
estimate (formerly the distance estimate), d[u], to zero for
each vertex
2. Let vertex u be the source vertex and assign d[u] = 1
3. Modify the RELAX routine to maximize the reliability
estimate, where the reliability estimate estimate along any
path is the product of the reliabilities of each link (due to
independent probabilities). Relaxing an edge (a; b) will update
the reliability estimate d[b] = max(d[b]; d[a]*R(a,b))
4. Use a priority queue based on a Max-Heap (most reliable
vertex on top)

4

DAST 2005

Counting paths
Q. Give an efficient algorithm to count the total number of paths

in a DAG G between a source vertex s and each other vertex

A. The algorithm exploits the fact that G is a DAG and can
therefore be topologically sorted.
1. Set the path counts of all vertices to 0, and set s’s

path count to one.
2. Topologically sort the vertices.
3. For each vertex u in topological order, do the

following:
4. For each neighbor v of u, add u’s path count to

v’s path count.

DAST 2005

Counting paths
Correctness: Since the vertices are topologically ordered, a
vertex v is not reachable until the path count to all vertices

have been updated.
(The proof is by induction on the topological order of the
vertices)

EvuVu ∈∈),(that such

DAST 2005

Prim with adjacency matrix
Reminder: Prim’s algorithm (G, w, v)
Q ← V[G]
for each u in Q do

key [u] ← ∞
key [r] ← 0
π[r] ← NIl
while queue is not empty do

u ← EXTRACT_MIN (Q)
for each v in Adj[u] do

if v is in Q and w(u, v) < key [v]
then π[v] ← w(u, v)

key [v] ← w(u, v) ← decrease_key
O(log|V|)

loop
executed a

total of
O(|E|) times

← build heap O(|V|)

O(|V|)

O(|V|log|V|)

5

DAST 2005

Prim with adjacency matrix
The time complexity of the algorithm using a min heap is
O(|V|log|V| + |E|log|V|) = O(|E|log|V|)

We will now see a variant that works with graphs represented
using adjacency matrices in O(|V|2) time

DAST 2005

Prim with adjacency matrix
Reminder: Prim’s algorithm (G, w, v)
A ← V[g] // Array
For each vertex u in A do

key [u]= ∞
key [r] ← 0
π[r] ← NIL
while Array A is not empty do

scan over A find the node u with smallest
key, and remove it from array A
for each vertex v in Adj[u]

if v in A and w[u,v] < key[v] then
π[v] ← u
key[v] ← w[u,v]

O(|V|)

← build an array Θ(|V|)

Θ(|V|)

O(|V|)

*|V|

