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(and more)

sample questions
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Q. We’ve seen that solving the shortest paths problem 
requires O(VE) time using the Belman-Ford algorithm 
or O((V+E)logV) using the Dijkstra algorithm (might be 

even O(VlogV+E) when using Fibonacci heaps). Suppose you 
know that your graph is a DAG, can you do better?
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A. Yep, the algorithm is:
Dag-Shortest-Paths(G,w,s)
1. topologically sort the vertices of G
2. Initialize-Single-Source(G,s)
3. For each vertex u (taken in topologically                  

sorted order)
4. For each vertex v ∈ Adj[u]
5. Relax(u,v,w)

This procedure runs in Θ(V+E)

Θ(|V+E|)

Θ(|V|)

(Θ(|V|))
Θ(|E|)
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We first run topological sort (O(|V+E|))
Reminder:
A topological sort takes a directed acyclic graph, or 
DAG, and returns an ordered list of the vertices such 
that if there is an edge (v,u) in the graph, then v will 
appear before u in the list.
If there are a few paths from s to v, we will relax all 
the vertices along these paths before calculating the 
distance from v → When we relax the distances of all 
the neighbors of v, the distance to v is the shortest 
path (since we relax vertices in topologically ordered manner, 
we will relax all vertices that have incoming edges to v, before 
relaxing all those reachable from v)
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(a bit) More formally:
We want to prove: The algorithm calculates the shortest 
paths between the source vertex and all other vertices

♦ The proof of correctness is by induction on the length of the 
number of nodes on the shortest path between s and a node 
v: p=(v0,..,vk) with v0 = s, vk = v.
♦ We run through the nodes in topological order: the edges of 
p are relaxed in the order of the path (we did not have this 
property in Bellman-Ford).
♦ Assuming inductively d[vi-1]=δ[s, vi-1] when the for loop 
reached vi-1 the relaxation of (vi-1, vi) has the effect of setting 
d[vi]=D[s, vi].
♦ Initially d[v0]=0=D[s,s].
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Modified MST
Your friend suggests an improved recursive MST algorithm:
Given a graph G = (V,E), partition the set V of vertices into two 
sets V1 and V2 such that | V1 | and | V2| differ by at most 1. Let 
E1 be the set of edges that are incident only on vertices in V1 , 
and let E2 be the set of edges that are incident only on 
vertices in V2. Recursively solve a minimum-spanning tree 
problem on each of the two subgraphs G1 = (V1,E1) and  G2 = 
(V2,E2). Finally, select the minimum-weight edge in E that 
crosses the cut (V1; V2), and use this edge to unite the 
resulting two minimum spanning trees into a single spanning 
tree.
Will it work?
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Modified MST
No, it won’t work, counter example:
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Most Reliable path
Assume you are given a directed graph                  on which 
each edge has an associated value            which is a 
real number in the range 0 ≤ ≤ 1 that represents the 
reliability of a communication channel from vertex u to vertex 
v. Interpret           to be the probability that the channel from u
to v will not fail, and assume that these probabilities are 
independent. Give an efficient algorithm to find the most 
reliable path between two given vertices.
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Most Reliable path
1. Modify the initialization routine to initialize the reliability
estimate (formerly the distance estimate), d[u], to zero for 
each vertex
2. Let vertex u be the source vertex and assign d[u] = 1
3. Modify the RELAX routine to maximize the reliability 
estimate, where the reliability estimate estimate along any 
path is the product of the reliabilities of each link (due to 
independent probabilities). Relaxing an edge (a; b) will update 
the reliability estimate d[b] = max(d[b]; d[a]*R(a,b))
4. Use a priority queue based on a Max-Heap (most reliable 
vertex on top)
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Counting paths
Q. Give an efficient algorithm to count the total number of paths 

in a DAG G between a source vertex s and each other vertex

A. The algorithm exploits the fact that G is a DAG and can 
therefore be topologically sorted.
1. Set the path counts of all vertices to 0, and set s’s

path count to one.
2. Topologically sort the vertices.
3. For each vertex u in topological order, do the 

following:
4. For each neighbor v of u, add u’s path count to 

v’s path count. 

DAST 2005

Counting paths
Correctness: Since the vertices are topologically ordered, a 
vertex v is not reachable until the path count to all vertices  

have been updated.
(The proof is by induction on the topological order of the 
vertices)
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Prim with adjacency matrix
Reminder: Prim’s algorithm (G, w, v)
Q ← V[G] 
for each u in Q do 

key [u] ← ∞
key [r] ← 0 
π[r] ← NIl
while queue is not empty do 

u ← EXTRACT_MIN (Q) 
for each v in Adj[u] do 

if v is in Q and w(u, v) < key [v] 
then π[v] ← w(u, v) 

key [v] ← w(u, v) ← decrease_key
O(log|V|)

loop 
executed a 

total of 
O(|E|) times

← build heap O(|V|)

O(|V|)

O(|V|log|V|)
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Prim with adjacency matrix
The time complexity of the algorithm using a min heap is       
O(|V|log|V| + |E|log|V|) = O(|E|log|V|)

We will now see a variant that works with graphs represented 
using adjacency matrices in O(|V|2) time
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Prim with adjacency matrix
Reminder: Prim’s algorithm (G, w, v)
A ← V[g] // Array
For each vertex u in A do

key [u]= ∞
key [r] ← 0
π[r] ← NIL
while Array A is not empty do

scan over A find the node u with smallest 
key, and remove it from array A
for each vertex v in Adj[u]

if v in A and w[u,v] < key[v] then
π[v] ← u
key[v] ← w[u,v]

O(|V|)

← build an array Θ(|V|)

Θ(|V|)

O(|V|)

*|V|


