Tirgul 11 (and more) sample questions

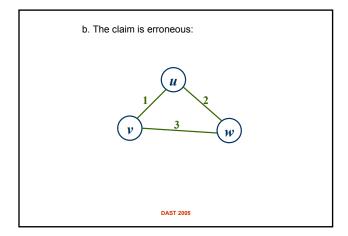
DAST 2005

Q. Let G = (V,E) be an undirected, connected graph with an edge weight function w : E→R. Let r ∈ V . A depth-first search (DFS) of G starting at r will construct a spanning tree for G. That spanning tree is not necessarily a minimum weight spanning tree. DFS examines the neighbors of a vertex in an order that is arbitrarily chosen. Suppose a graph search utilizes the edges incident to a vertex in non decreasing order by weight. Call such a graph search - weight aware.

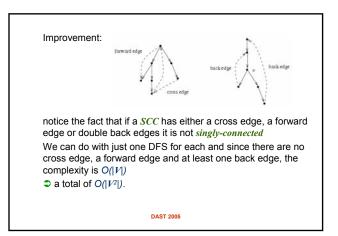
- a. Give the pseudocode for a weight aware version of DFS.
- b. Prove or disprove: The depth-first search tree returned by a weight aware DFS is always an MST.

DAST 2005

	DFS-WEIGHTAWARE (G, w, s)
а.	1 \triangleright G = (V, E) is an n-vertex, connected, undirected graph
	2 $\triangleright w : E \to \mathcal{R}$ is the edge weight function
	$3 \implies s \in V$ is the start vertex
	4 for $u \in V$
	5 do $color[u] \leftarrow WHITE$ 6 $\pi[u] \leftarrow NIL$
	6 $\pi[u] \leftarrow \text{NIL}$
	7 $time \leftarrow 0$
	8 ▷ Since G is connected, we only start DFS once
	9 DFS-VISIT-WEIGHTAWARE(s)
	DFS-VISIT-WEIGHTAWARE(u)
	1 $color[u] \leftarrow GRAY$
	2 $time \leftarrow time + 1$
	$3 d[u] \leftarrow time$
	4 $c \leftarrow Adj[u] $ \triangleright number of neighbors of u
	5 $N[1, e] \leftarrow Adj[u]$ sorted in nondecreasing order by $w(u, v)$
	6 for $i \leftarrow 1$ to c
	7 do $v \leftarrow N[i]$
	8 if $color[v] = WHITE$
	9 then $\pi[v] \leftarrow u$
	10 DFS-VISIT-WEIGHTAWARE(v)
	11 $color[u] \leftarrow BLACK$
	12 $time \leftarrow time + 1$
	$13 f[u] \leftarrow time$
	14 return d, π
	DAST 2005



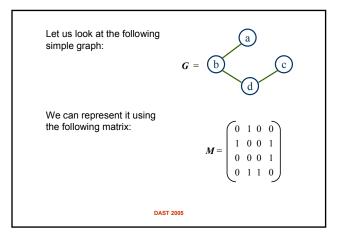
- Q. (Cormen 22.3-12) A directed graph G = (V, E) is *singly-connected* if there is at most onesimple path between any two vertices $u, v \in V$, give an algorithm for deciding whether a graph *G* is *singly-connected*
- A. Construct the *Strongly Connected Components (SCC)* $.s_{1,s}s_{2,s}s_{3,...,}s_{k}$ of *G*. For each such *SCC* Run DFS from each of its vertices (total of $O(|V\cdot(V+E)|)$). A Forward edge or a cross edge means the graph is not *singly-connected*. We then run DFS from each vertex in G^{SCC} , since there are no back edges, each DFS will take O(|V|) - a total of $O(|V^{2}|)$. So the total complexity is $O(|V\cdot(V+E)|)$

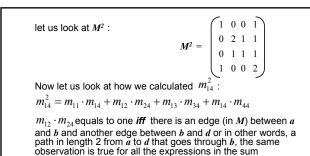


Given a graph *G* represented using an adjacency matrix *M*, what is M^2 , M^3 , M^k ?

we know that *M* holds all paths of length one between two vertices (edges) remember matrix multiplication:

 $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{n1} & \dots & c_{nn} \end{pmatrix}$ where $c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31} + \dots + a_{1n} \cdot b_{n1}$ $c_{12} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22} + a_{13} \cdot b_{32} + \dots + a_{1n} \cdot b_{n2} \dots$ $c_{21} = a_{21} \cdot b_{11} + a_{22} \cdot b_{21} + a_{23} \cdot b_{31} + \dots + a_{2n} \cdot b_{n1} \dots$ \dots $c_{nn} = a_{n1} \cdot b_{1n} + a_{n2} \cdot b_{2n} + a_{n3} \cdot b_{3n} + \dots + a_{nn} \cdot b_{nn}$ DAST 2005





• m_{14}^2 tells us how many roots of length 2 exist between *a* and *d*

 \Im M² holds all the paths of length 2 in the graph G

DAST 2005

- Q. (Cormen 22.5-6) Given a directed graph G = (V, E), explain how to create another graph G' = (V, E') such that: a. G' has the same SCC as G

 - b. G' has the same components graph as G
 - c. E' is as small as possible.

Describe an efficient algorithm for computing G'

A. 1. Calculate the SCC of *G*2. leave the components graph as is 3. create a cycle from each component (remove redundant edges)

DAST 2005