
1

DAST 2005

Tirgul 10

AVL Trees
Graphs

DFS
sample questions

DAST 2005

Q. We have two BSTs, A having n nodes and B
having m nodes, where n ≥ m. We would like
to find their intersection (values that appear in
both trees) so we decide to perform an inorder
traversal of A and search for each value in B.
What is the worst-case running time of our
approach? What if we traverse BST B and
search for the values in A?

A. We traverse through all the members of A (n
members). For each of these members we
perform a search in B. Since the running time
of search is proportional to the height of the
tree B which is m in the worst case the total

DAST 2005

Q. This time A and B are AVL trees. What is the
worst-case running time of our approach?
What if we traverse B and search for the
values in A?

A. We traverse through all the members of A (n
members). For each of these members we
perform a search in B. Since the running time
of search is proportional to the height of the
tree B which is O(log(m)) in the worst case ⇒
The total running time is O(n*log(m)).
Traversing through B and searching for the
members of A yields a running time of
O(m*log(n)) (which is better if n ≥ m)

2

DAST 2005

Q. Can you think of a better approach?
A. We dump the trees into lists (inorder traversal: O(n) + O(m))

and find the intersection between the lists.
Finding the intersection between two sorted lists is linear in
the number of elements in both lists:
List listsIntersection(L1,L2) {

L3 = new List;
while(L1 != NULL && L2 != NULL) {

if (L1.data ≤ L2.data) {
if (L1.data == L2.data) {

L3.add(L1.data);
L2 = L2.next; }

L1 = L1.next;}
else { L2 = L2.next;}}

return L3;
}

in each iteration we advance at least one of the pointers: The
total number of iterations ≤ n+m

DAST 2005

Q. We have two AVL trees of height h such that all elements in A
are smaller than all elements in B, write an efficient algorithm
for building an AVL tree C containing all the members of A
and B, what is its complexity?

A. Remove the maximum of A (O(h)), use it as a root for C (A is
the left subtree, while B is the right subtree)

Q. What if A is higher than B by 2?
A. We can still merge the trees efficiently like in the previous

case but we might have to fix C using rotations.

DAST 2005

DFS – pseudo code
DFS(G)

//initializing.
for each vertex u∈V[G] {

u.color = white;
u.prev = nil;

}
time = 0;
for each vertex u ∈V[G] {

if (u.color == white)
DFS-VISIT(u)

}

3

DAST 2005

DFS – pseudo code (cont.)
DFS-VISIT(u)

u.color = gray;
u.d = ++time;
for each vertex v∈adj[u] {

if (v.color == white) {
v.prev = u;
DFS-VISIT(v);

}
}
u.color = black;
u.f = ++time;

DAST 2005

Q. Let G be a graph having |V| vertices and |E| edges
What is the asymptotic time complexity of running DFS on G
when G is represented using: (a) an adjacency list? (b) an
adjacency matrix? When will the asymptotic time complexity
be identical? When will we have the largest difference?

A. The first stage goes through all the vertices (O(|V|) regardless
of the representation)
In the second stage we have a constant amount of work for
each potential edge, which is O(|E|) in case of an adjacency
list and O(|V2|) in case of an adjacency matrix.
In full graphs O(|E|) == O(|V2|), the sparser the graph, the
bigger the difference (in a tree O(|E|) == O(|V|))

DAST 2005

Q. Apply DFS to the following graph. Whenever the algorithm has
a choice, assume that the node that comes earlier in the
alphabet is considered first (like B before E). (This makes the
algorithm deterministic, so you can demonstrate that you
understand it fully.) Give the resulting DFS-tree(s) for the
graph.

B

C

A

E

F

D

4

DAST 2005

A.

B
C

A

E

F

D

B

C

A

E

F

D

DAST 2005

Q. Is it true that in an undirected graph G, if there is a path
between two vertices u and v then in the DFS-tree(s) of G,
either v is a sibling of u or u is a sibling of v. Proof or give a
counter example

A. False (in the previous graph there is a path from C to F yet
they are not siblings of one another)

DAST 2005

Q. Suggest an algorithm (pseudo-code) for labeling (with labels
1,2,…) the connected components in an undirected graph (all
vertices in the same connected component should have the
same label). What is it’s complexity?

A. This is a very small modification of the DFS algorithm. Instead
of coloring each finished node in black we color it with a label.
We increase the label for each connected component (outer
loop)

the total time complexity is therefore O(|V+E|)

5

DAST 2005

Q. In a directed graph G, show how a vertex v might have both
incoming and outgoing edges, yet its tree in the DFS forest
contains only v.

A.

DFS(u)
DFS(v)
DFS(w)

w

v

u

wvu

DAST 2005

Q. q4,5 from ex7

