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Week 4 – Some Helpful Material

Randomized Quick Sort 
& Lower bound & 

General remarks…
DAST 2005

Complexity Measures
Worst case complexity: The number of operations the 

algorithm performs on the worst input. 
Average Complexity: Average over the inputs x, on the 

number of operations the algorithm does on x. 
Randomized complexity (of a randomized algorithm) on 

input x (denote R(x)(n)) Average over the random choices 
of the algorithm, of the running time of the algorithm on 
input x with those random choices. 

Randomized complexity (of a randomized algorithm) 
(denote R(n)): the maximum over the inputs x of R(x)(n).  
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Randomized Complexity: Remark
Note that in randomized complexity, we say that in the worst 

input, we expect the running time to be R(n). But we do 
not say that it will be exactly that! Just on average over the 
random choices. 

If we want to be exact, we need to say also that the 
probability that the running time will be much larger than 
R(n), is very small. (in other words, that most of the times 
the actual running time is concentrated around R(n), and 
does not exceed it by a lot.).

This is true but to show it we need too much probability 
theory… you will learn the probability theory required for 
this only next year.  
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Continuation of Quick Sort 
analysis

• We are trying to get a bound on the Randomized complexity 
analysis, by solving the following recurrence: 
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After some algebraic tricks, we got to the following 
equation :
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Continuation of Quick Sort 
analysis

• We now open this by iteration:
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Continuation of Quick Sort 
analysis

• We assume T(1)=O(1), and so the second term is of order n, 
• And so it remains to upper bound the first term. We observe that the 

Harmonic series appears there: 
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The Harmonic Series: proof of 
claim 

• Divide the sum to boxes of size 1,2,4,8, etc. Where we assume for the 
moment that  n is a power of 2, minus 1. 
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The sum of elements in each box is at most 1 (because if the elements in the 
Box were all equal to the firs the sum would be one, but the elements are
monotonically decreasing)

Also, the sum of the elements in each box is least ½ (because if the elements
In the box were all equal to the first element after the box (e.g., ¼ after the 
second box ) then the sum would be ½. But the elements are all bigger than
that first element…)
So, we have                                                  where k is the number of boxes.  kmHk ≤≤ )(2/
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The Harmonic Series (Continued) 
• We need to relate k to n. Since the number of elements in the k’th box is 
•

• We have 
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And so we have 

I leave it for you to check that this implies the claim for n by our
assumption,  and then for general n. 
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To complete the randomized complexity analysis…
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A similar analysis  would show

Where instead of the 2c terms we would put c. Hence:   
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Lower bound
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Sorting with comparisons
• The basic operation of all the sorting algorithms 

we have seen so far is the comparison between 
two elements:    ai ≤ aj

• The sorted order they determine is based only on 
comparisons between the input elements! 

• We would like to prove that any comparison 
sorting algorithm must make Ω(n lg n) 
comparisons in the worst case to sort n elements 
(lower bound).

• Sorting without comparisons takes Ω(n) in the 
worst case, but we make assumptions about the 
input. Our lower bound will not hold in such cases. DAST 2005

Comparison sorting – lower bound 
• We want to prove a lower bound (Ω) on the worst-

case complexity sorting for ANY sorting algorithm 
that uses comparisons.

• We will use the decision tree model to evaluate the 
number of comparisons that are needed in the worst 
case. 

• Every algorithm A has its own decision tree T, 
depending on how it does the comparisons between 
elements. 

• The length of the longest path from the root to the 
leaves in this tree T will determine the maximum 
number of comparisons that the algorithm must 
perform.



3

DAST 2005

Decision trees
• A decision tree is a full binary tree (a binary tree with all 

nodes having either two children or none) that represents 
the comparisons between elements that are performed by 
a particular algorithm. 

• The tree has internal nodes, leaves, and branches: 
• Internal node: marked by two indices (i:j) for 1 ≤ i, j ≤ n

(the comparison done at the node)
• Branches: result of a comparison 
• ai ≤ aj (left) or ai > aj (right)
• Leaf: a permutation of the input π(1), … π(n)
• (the outcome of the sorting algorithm) 

DAST 2005

Example of Decision tree for 3 
elements
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Paths in decision trees
• The execution of sorting algorithm A on input I 

corresponds to tracing a path in T from the root to a 
leaf

• Each internal node is associated with a yes/no
question, regarding the input, and the two edges 
that are coming out of it are associated with one of 
the two possible answers to the question. 

• The leaves are associated with one possible 
outcome of the tree, and no edge is coming out of 
them.

• At the leaf, the permutation π is the one that sorts 
the elements!DAST 2005

Decision tree for 3 elements

π(A)=(6,7,9)

9 > 6

(7,9,6)

(7,9,6)

(7,9,6)
7 ≤ 9

7 > 6

Longest path: 3
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Decision tree computation
• The computation for an input starts at the root, and 

progresses down the tree from one node to the 
next according to the answers to the questions at 
the nodes. 

• The computation ends when we get to a leaf. 
• ANY correct algorithm MUST be able to produce 

each permutation of the input.
• There are n! permutations and they must all appear 

in the leafs of the tree.
• So the number of leafs in a decision tree of any 

correct sorting algorithm is at least n!. 
DAST 2005

Comparison-based sorting 
algorithms

• Why “at least”? Because there might be more 
than one leaf with the same answer, 
corresponding to different ways the algorithm 
treats different inputs.
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Worst case complexity
• The length of the longest root-to-leaf path in the 

decision tree is the number of comparisons for 
the worst input. 

• We will give a lower bound on the length of the 
longest path in a decision tree of any sorting 
algorithm. 
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Length of the longest path

• Consider a decision tree of some sorting algorithm. 
Let d be the height of the tree – the length of the 
longest path. 

• We know: the number of leafs in a binary tree of 
height d is at most 2d. 

• On the other hand, we know that the number of 
leafs is at least n!. 

• So we have: n! ≤ number of leafs ≤ 2d . So n! ≤ 2d

•
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Lower bound on longest path
• Therefore, log (n!) ≤ log (2d) = d
• But 
• log(n!)=log(n)+log(n-1)+log(n-2)+….log(2)+log(1). 
• Half of the terms in this sum, (n/2 terms), are larger 

than log(n/2). 
• Hence we have: (n/2) log (n/2) ≤ log (n!) 
•
• This proves that d is Omega of nlog(n). 

• This puts a lower bound on the number of 
comparisons (and obviously, on the total number of 
operations) in the worst case of a sorting algorithm. 
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Worst case complexity
• The worst-case number of comparisons is the 

length of the longest root-to-leaf path in the decision 
tree.

• We gave a lower bound on the length of the longest 
path in a decision tree of a sorting algorithm. This 
implies a lower bound on the worst- case number of 
comparisons the algorithm requires. Hence, it gives 
a lower bound on the worst case total number of 
operations of such an algorithm. 

• Hence we have a lower on the worst case 
complexity of comparison based sorting algorithms. 


