
1

DAST 2005

Week 4 – Some Helpful Material

Randomized Quick Sort
& Lower bound &

General remarks…
DAST 2005

Complexity Measures
Worst case complexity: The number of operations the

algorithm performs on the worst input.
Average Complexity: Average over the inputs x, on the

number of operations the algorithm does on x.
Randomized complexity (of a randomized algorithm) on

input x (denote R(x)(n)) Average over the random choices
of the algorithm, of the running time of the algorithm on
input x with those random choices.

Randomized complexity (of a randomized algorithm)
(denote R(n)): the maximum over the inputs x of R(x)(n).

DAST 2005

Randomized Complexity: Remark
Note that in randomized complexity, we say that in the worst

input, we expect the running time to be R(n). But we do
not say that it will be exactly that! Just on average over the
random choices.

If we want to be exact, we need to say also that the
probability that the running time will be much larger than
R(n), is very small. (in other words, that most of the times
the actual running time is concentrated around R(n), and
does not exceed it by a lot.).

This is true but to show it we need too much probability
theory… you will learn the probability theory required for
this only next year.

DAST 2005

Continuation of Quick Sort
analysis

• We are trying to get a bound on the Randomized complexity
analysis, by solving the following recurrence:

cnkT
n

nT
n

k

+≤ ∑
−

=

1

1

)(2)(

After some algebraic tricks, we got to the following
equation :

cnT
n
nnT

n
nnT n

cnnc 2)(
1
2)(

1
2)1(1

)1(22

+
+
+

≤+
+
+

≤+ +
−+

DAST 2005

Continuation of Quick Sort
analysis

• We now open this by iteration:

=
+

++

=
+

+
+

++
−
+

+
+

+
+
+

+
+
+

≤+++−
−

+
+
+

≤++−
+

+
+

≤+
+
+

≤+

∑
+

=

)1(
2

212)2(

)1(
2

22)
3

2....
1
22

1
2

2
2(

.....

2)2)2)2(
1

(1(
1
2

2)2)1(1(
1
2

2)(
1
2)1(

1

3

Tn
j

cn

Tncn
n
n

n
n

n
n

n
n

cccnT
n

n
n

n
n
n

ccnT
n

n
n
n

cnT
n
nnT

n

jDAST 2005

Continuation of Quick Sort
analysis

• We assume T(1)=O(1), and so the second term is of order n,
• And so it remains to upper bound the first term. We observe that the

Harmonic series appears there:

∑
=

=
m

j j
mH

1

1)(
We now want to show that

))(log()(nmH Θ=: for all nClaim

2

DAST 2005

The Harmonic Series: proof of
claim

• Divide the sum to boxes of size 1,2,4,8, etc. Where we assume for the
moment that n is a power of 2, minus 1.

{
...

7
1

6
1

5
1

4
1

3
1

2
1

1
1)(+++++++=

4434421321
mH

The sum of elements in each box is at most 1 (because if the elements in the
Box were all equal to the firs the sum would be one, but the elements are
monotonically decreasing)

Also, the sum of the elements in each box is least ½ (because if the elements
In the box were all equal to the first element after the box (e.g., ¼ after the
second box) then the sum would be ½. But the elements are all bigger than
that first element…)
So, we have where k is the number of boxes. kmHk ≤≤)(2/

DAST 2005

The Harmonic Series (Continued)
• We need to relate k to n. Since the number of elements in the k’th box is
•

• We have

)1log()(2/)1log(

)1log(
12

2...421 1

+≤≤+

+=
=−

=++++ −

nnHn

nk
n

n
k

k

And so we have

I leave it for you to check that this implies the claim for n by our
assumption, and then for general n.

12 −k

DAST 2005

To complete the randomized complexity analysis…

)log()()log(

)1(
2

2]2/3)1([2)2(

)1(
2

212)2()1(
1

3

nnOnnnO

TnnHcn

Tn
j

cnnT
n

j

=Θ+=

+
+−++=

=
+

++≤+ ∑
+

=

))log(()(nnnT Θ=

A similar analysis would show

Where instead of the 2c terms we would put c. Hence:

))log((')(2)(
1

1

nnnckT
n

nT
n

k

Ω=+≥ ∑
−

=

DAST 2005

Lower bound

DAST 2005

Sorting with comparisons
• The basic operation of all the sorting algorithms

we have seen so far is the comparison between
two elements: ai ≤ aj

• The sorted order they determine is based only on
comparisons between the input elements!

• We would like to prove that any comparison
sorting algorithm must make Ω(n lg n)
comparisons in the worst case to sort n elements
(lower bound).

• Sorting without comparisons takes Ω(n) in the
worst case, but we make assumptions about the
input. Our lower bound will not hold in such cases. DAST 2005

Comparison sorting – lower bound
• We want to prove a lower bound (Ω) on the worst-

case complexity sorting for ANY sorting algorithm
that uses comparisons.

• We will use the decision tree model to evaluate the
number of comparisons that are needed in the worst
case.

• Every algorithm A has its own decision tree T,
depending on how it does the comparisons between
elements.

• The length of the longest path from the root to the
leaves in this tree T will determine the maximum
number of comparisons that the algorithm must
perform.

3

DAST 2005

Decision trees
• A decision tree is a full binary tree (a binary tree with all

nodes having either two children or none) that represents
the comparisons between elements that are performed by
a particular algorithm.

• The tree has internal nodes, leaves, and branches:
• Internal node: marked by two indices (i:j) for 1 ≤ i, j ≤ n

(the comparison done at the node)
• Branches: result of a comparison
• ai ≤ aj (left) or ai > aj (right)
• Leaf: a permutation of the input π(1), … π(n)
• (the outcome of the sorting algorithm)

DAST 2005

Example of Decision tree for 3
elements

DAST 2005

Paths in decision trees
• The execution of sorting algorithm A on input I

corresponds to tracing a path in T from the root to a
leaf

• Each internal node is associated with a yes/no
question, regarding the input, and the two edges
that are coming out of it are associated with one of
the two possible answers to the question.

• The leaves are associated with one possible
outcome of the tree, and no edge is coming out of
them.

• At the leaf, the permutation π is the one that sorts
the elements!DAST 2005

Decision tree for 3 elements

π(A)=(6,7,9)

9 > 6

(7,9,6)

(7,9,6)

(7,9,6)
7 ≤ 9

7 > 6

Longest path: 3

DAST 2005

Decision tree computation
• The computation for an input starts at the root, and

progresses down the tree from one node to the
next according to the answers to the questions at
the nodes.

• The computation ends when we get to a leaf.
• ANY correct algorithm MUST be able to produce

each permutation of the input.
• There are n! permutations and they must all appear

in the leafs of the tree.
• So the number of leafs in a decision tree of any

correct sorting algorithm is at least n!.
DAST 2005

Comparison-based sorting
algorithms

• Why “at least”? Because there might be more
than one leaf with the same answer,
corresponding to different ways the algorithm
treats different inputs.

4

DAST 2005

Worst case complexity
• The length of the longest root-to-leaf path in the

decision tree is the number of comparisons for
the worst input.

• We will give a lower bound on the length of the
longest path in a decision tree of any sorting
algorithm.

DAST 2005

Length of the longest path

• Consider a decision tree of some sorting algorithm.
Let d be the height of the tree – the length of the
longest path.

• We know: the number of leafs in a binary tree of
height d is at most 2d.

• On the other hand, we know that the number of
leafs is at least n!.

• So we have: n! ≤ number of leafs ≤ 2d . So n! ≤ 2d

•

DAST 2005

Lower bound on longest path
• Therefore, log (n!) ≤ log (2d) = d
• But
• log(n!)=log(n)+log(n-1)+log(n-2)+….log(2)+log(1).
• Half of the terms in this sum, (n/2 terms), are larger

than log(n/2).
• Hence we have: (n/2) log (n/2) ≤ log (n!)
•
• This proves that d is Omega of nlog(n).

• This puts a lower bound on the number of
comparisons (and obviously, on the total number of
operations) in the worst case of a sorting algorithm.

•DAST 2005

Worst case complexity
• The worst-case number of comparisons is the

length of the longest root-to-leaf path in the decision
tree.

• We gave a lower bound on the length of the longest
path in a decision tree of a sorting algorithm. This
implies a lower bound on the worst- case number of
comparisons the algorithm requires. Hence, it gives
a lower bound on the worst case total number of
operations of such an algorithm.

• Hence we have a lower on the worst case
complexity of comparison based sorting algorithms.

