
Reliability of Distributed Systems∗

Lecture 12: Introduction to Peer-to-Peer systems

Notes taken by Shay Horovitz

January 13, 2005

Summary: In this lesson, we’ll learn about the basics of Peer-to-Peer
(P2P) computing. We’ll start by a general introduction to the field, con-
tinue with a scan of the most popular techniques being used today and em-
phasize systems that are based on a Distributed Hash Table (DHT). Then
we’ll summarize some basic routing schemes and slightly touch the topic
of dynamic graph building.

1 Introduction to Peer-to-Peer
In traditional computer systems, all data was hosted and handled by a single server or
server farms. This approach was also termed as Client/Server infrastructure. Through-
out the design process of those systems, computer designers used to devote the main ef-
forts in the scalability and the robustness of the server side. The Client/Server approach
was and still is very common in computer systems; However, the price of maintaining
the server scalability becomes very expensive and even not realistic as the number of
clients increases tremendously.

A new approach called Peer-to-Peer (P2P) offers a distributed solution where there
is no central server that hosts all data. Instead, all data is distributed among nodes (the
former clients). In typical P2P systems, there will be no centralized control or database
and no peer will have a global view of the whole system. In addition, there will be
many nodes and among them some will be unreliable. P2P nodes have the ability to
self organize the data between them, while maintaining fault tolerance.

Another interesting definition of P2P systems is by the relativity of computers, as
defined in Webopedia: ”P2P is a type of network in which each workstation has equiv-
alent capabilities and responsibilities. This differs from Client/Server architectures, in
which some computers are dedicated to serving the others”.

While P2P became popular with the entrance of Napster to the market, it is not new
at all, at least technically. For example, routers are a good example of a P2P system,
as they discover the network topology and maintain it, fault tolerant and autonomous,
with no server ruling. Other close examples are the Usenet news systems and the DNS.

∗ Spring 2004, the Hebrew University, Israel.

1

Figure 1: Three Peer-to-Peer architectures: Centralized(Left), Decentralized(Middle)
and Hierarchical(Right)

Primary ”modern” designs of P2P systems in the late 90’s such as the file sharing
services Napster and iMesh, used a dedicated server/ server farm as an index for the
distributed data. Each client/node approached the server with a file id (usually a file
name or MD5 digest of the file) and the server supplied a list of IP addresses of the
nodes that share the requested file. The main disadvantage of Napster and iMesh was
that by closing a single server, the whole system is down. This approach is also known
as the Centralized P2P architecture.

A decentralized P2P architecture appeared with Nullsoft’s Gnutella, where there
was no server at all. In Gnutella, a node requests a file from a small group of computers
that it knows currently; then those nodes deliver the request to the nodes they know and
so on. A limiting rule allowed a predefined maximal number of hops for each request
route. Yet, Gnutella suffered from slow searches and the existence of islands of sub-
networks that weren’t connected to each other. In addition, it was found that 70% of

2

the nodes shared no files and 50% of the searches responded from 1% of the hosts.
The latest major architecture being used in P2P systems today was first imple-

mented in Fasttrack’s KaZaA and is referred as the hierarchical P2P architecture. The
key innovation of KaZaA is the use of Supernodes. Each node is either a supernode
or is assigned to a supernode. Nodes with more bandwidth and better availability are
automatically designated as supernodes. Each supernode knows about many other su-
pernodes. A supernode searches the requests within its list of nodes and if needed,
turns to other supernodes with the request. In KaZaA each file can be downloaded
from multiple nodes in parallel, as implemented earlier in iMesh. Another system that
implemented a KaZaA-like hierarchical architecture is Gnutella2.

2 Distributed Hash Tables Basics
A primary challenge in designing a P2P system is the problem of locating content. A
simple strategy that was implemented in is an expanding ring search until the content
is found. The cost of this strategy is at least N/r - where N is the number of nodes and r
is the number of nodes that have a copy of the requested content. Another issue is that
we need many copied of the content to keep the overhead small. A different strategy
was led by Napster and iMesh, where there exists a centralized index. However, both
systems faced the problems of high load on the server side and the existence of a single
point of failure. As for locating content, KaZaA’s solution can be seen as a combination
of Gnutella and Napster, where inside the group of nodes, the supernode acts like a
Napster server and outside a Gnutella-like solution ruling.

In order to solve the typical problems of popular P2P solutions, a ”distributed”
approach might lead us to assign particular nodes to hold particular content. We’d like
that when a node requests for a content, it will go to the node that is supposed to hold it,
or at least a node that knows where this content is located. We’d like to reach this under
a minimal amount of bottlenecks - that is: we’d like to distribute the responsibilities
evenly among the existing nodes as we can. In addition, our solution should also be
adapted to nodes joining and leaving or failing. This means that whenever a node joins
our system network, we should give it some responsibilities, and as it leaves of fails, we
should redistribute its responsibilities among existing nodes. We’ll describe a solution
based on Distributed Hash Tables and analyze its characteristics.

A distributed hash table (DHT), is a technology based on hash tables enabling iden-
tification and retrieving, in distributed systems like some P2P networks, of information.
The whole table is distributed on the network: each node has a part of it. A Hash Table
associates data with keys. A key is hashed to find a bucket within the hash table and
each bucket is expected to hold items/buckets items. In a Distributed Hash Table,
nodes play the role of the hash buckets. A key is hashed to find a responsible node
node, while the data and the load are balanced across nodes. While DHTs smell like
a good solution for locating content, we still need some modifications to solve some
minor problems as we’ll notice forward.

One problem with implementing a simple hash function, is the problem of dynam-
icity - adding or removing nodes. If we’ll use the trivial hash mod N function (where
N is the number of nodes), virtually every key will change its location as the number

3

of nodes is being changed. In addition, we might not even know exactly the value of
N. The solution here would be to define a fixed hash space, where all hash values fall
within that space and do not depend on the number of nodes/peers/hash buckets. Each
key goes to the node closest to its ID in the hash space. The idea behind DHT hashing
is similar to consistent hashing, but in this case the IDs in the hash space are within
the range of [0,1]. Another problem is that in typical hash tables, all nodes must be
known to insert or lookup data. The solution here is for each node to know only a few
neighbors, and the messages are routed through neighbors via multiple hops.

A good DHT design will make sure that for each object, the node/s responsible for
that object should be reachable via a short path - meaning a small network diameter.
In addition, the number of neighbors for each node should remain reasonable - leading
to a small degree. The DHT routing mechanism should be decentralized where there’s
no single point of failure or bottlenecks. It should also gracefully handle nodes joining
and leaving, and provide low stretch.

3 Distributed Hash Tables case studies

3.1 Chord
Chord (created by MIT), is designed to offer the functionality necessary to implement
general-purpose systems while preserving flexibility. Chord is an efficient distributed
lookup system based on consistent hashing. It provides a unique mapping between an
identifier space and a set of nodes. A node can be a host or a process identified by an
IP address and a port number; each node is associated with a Chord identifier a. Chord
maps each identifier a to the node with the smallest identifier greater than a. This
node is called the successor of a. By using an additional layer that translates high level
names into Chord identifiers, Chord may be used as a powerful lookup service. Chord
maps identifiers to successor nodes; the distributed hash table being used by Chord
associates values (blocks) with identifiers, and the application provides a file system
interface.

Technically, Chord is emulating a circular m-bit ID space for both keys and nodes.
Each node ID is calculated by SHA-1 of its IP address. Each key ID is calculated by
SHA-1 of the key. A key is mapped to the first node whose ID is equal or follows the
key ID, meaning that each node is responsible for O(K/N) keys and O(K/N) keys
move when a node joins or leaves. In Chord, each node knows only 2 other nodes on
the ring: its successor and its predecessor. Lookup is achieved by forwarding requests
around the ring through successor pointers, and it requires O(N) hops.

As seen in Figure 5, assume that the system is in a stable state (all routing tables
contain correct information) and a search is initiated at node 2 of Figure 5(a) for the
successor of identifier 6. The largest node with an identifier smaller than 6 is 5. The
target of the search, 6, is in the interval defined by 5 and its successor (7); therefore 7
is the returned value.

When a node joins the ring, the process is assembled of 3 major parts: first comes
the initialization of all fingers of the new node, then the fingers of existing nodes are
being updated and finally keys are being transferred from successor node to the new

4

Figure 2: The Chord algorithm in a three-bit identifier space

5

node. A detailed description of Chord can be found in [DBK+01]

3.2 Pastry
Pastry (created by Microsoft Research) is a generic peer-to-peer content location and
routing system based on a self-organizing overlay network of nodes connected via the
Internet. Pastry is completely decentralized, fault-resilient, scalable, and reliably routes
a message to the live node. pastry takes into account network locality; it seeks to
minimize the distance messages travel, according to a to scalar proximity metric like
the number of IP routing hops. However, pastry has a more complicated join protocol
than Chord. A new node’s routing table will be populated with information from nodes
along the path taken by the join message - this leads to latency.

A detailed description of the Pastry protocol can be found in [RD01]; Yet we give
a short review here. Each Pastry node has a unique, 128-bit nodeId. The set of ex-
isting nodeIds is uniformly distributed; this can be achieved, for instance, by basing
the nodeId on a secure hash of the nodes public key or IP address. Given a message
and a key, Pastry reliably routes the message to the Pastry node with the nodeId that
is numerically closest to the key, among all live Pastry nodes. Assuming a Pastry
network consisting of N nodes, Pastry can route to any node in less than dlog2b Ne
steps on average (b is a configuration parameter with typical value 4). With concurrent
node failures, eventual delivery is guaranteed unless l/2 or more nodes with adjacent
nodeIds fail simultaneously (l is an even integer parameter with typical value 16).

The tables required in each Pastry node have only (2b − 1) ∗ dlog2b Ne+ l entries,
where each entry maps a nodeId to the associated nodes IP address. Moreover,after a
node failure or the arrival of a new node, the invariants in all affected routing tables can
be restored by exchanging O(log2b N) messages.

For the purposes of routing, nodeIds and keys are thought of as a sequence of digits
with base 2b. A nodes routing table is organized into dlog2b Ne rows with 2b − 1
entries each. The 2b − 1 entries in row n of the routing table each refer to a node
whose nodeId matches the present nodes nodeId in the first n digits, but whose n+1th
digit has one of the 2bpossible values other than the n+1th digit in the present nodes id.
The uniform distribution of nodeIds ensures an even population of the nodeId space;
thus, only dlog2b Ne levels are populated in the routing table. Each entry in the routing
table refers to one of potentially many nodes whose nodeId have the appropriate prefix.
Among such nodes, the one closest to the present node (according to a scalar proximity
metric, such as the round trip time) is chosen.

In addition to the routing table, each node maintains IP addresses for the nodes in
its leaf set, i.e., the set of nodes with the l/2 numerically closest larger nodeIds, and
the l/2 nodes with numerically closest smaller nodeIds, relative to the present nodes
nodeId.

Figure 3 shows the path of an example message. In each routing step, the current
node normally forwards the message to a node whose nodeId shares with the key a pre-
fix that is at least one digit (or b bits) longer than the prefix that the key shares with the
current nodeId. If no such node is found in the routing table, the message is forwarded
to a node whose nodeId shares a prefix with the key as long as the current node, but is
numerically closer to the key than the current nodeId. Such a node must exist in the

6

leaf set unless the nodeId of the current node or its immediate neighbour is numerically
closest to the key, or l=2 adjacent nodes in the leaf set have failed concurrently.

A key design issue in Pastry is how to efficiently and dynamically maintain the
node state, i.e., the routing table, leaf set and neighborhood sets, in the presence of
node failures, node recoveries, and new node arrivals. Briefly, an arriving node with the
newly chosen nodeId X can initialize its state by contacting a nearby node A (according
to the proximity metric) and asking A to route a special message using X as the key.
This message is routed to the existing node Z with nodeId numerically closest to X1.
X then obtains the leaf set from Z, and the ith row of the routing table from the ith node
encountered along the route from A to Z. One can show that using this information, X
can correctly initialize its state and notify nodes that need to know of its arrival.

To handle node failures, neighboring nodes in the nodeId space (which are aware
of each other by virtue of being in each others leaf set) periodically exchange keepalive
messages. If a node is unresponsive for a period T, it is presumed failed. All members
of the failed nodes leaf set are then notified and they update their leaf sets. Since the leaf
sets of nodes with adjacent nodeIds overlap, this update is trivial. A recovering node
contacts the nodes in its last known leaf set, obtains their current leaf sets, updates its
own leaf set and then notifies the members of its new leaf set of its presence. Routing
table entries that refer to failed nodes are repaired lazily;

4 Basic Network Topologies and Routing
Let O be a group of objects. h : O → [0..1] is a hash function (we assume that the
mapping is done well). Each node v has an id: v.id ∈ [0..1]. We’ll search for the object
o ∈ O by finding a maximal id value that is lower than the value of the hash of o. That
will be: arg∀v∈V = max{v.id|v.id < hash(o)}. First we’d like to build a network
(network design) and then we’ll construct a routing scheme.

4.1 Complete Graph
In a complete graph there’s full connectivity - each node knows the id’s of every other
node in the graph, thus it takes 1 hop to reach any target. The disadvantage is that as
the system gets larger, it should save many states and it also reflects for changes in a
dynamic network.

4.2 Ring
In a ring, each node has exactly 2 neighbors. the disadvantage is the number of mes-
sages between the nodes. (we assume that the ring is sorted by IP addresses).

4.3 Binary Tree
In a binary tree, the degree is constant (3) and the diameter is 2 lg n. There’s a problem
of congestion. We check the probability that a node will participate in the routing of a

7

Figure 3: Routing a message from node 65a1fc with key d46a1c. The dots depict live
nodes in Pastry’s circular namespace

8

Figure 4: Routing table of a Pastry node with nodeId 65a1x,b=4. Digits are in base 16,
x represents an arbitrary suffix. The IP address associated with each entry is not shown

9

Figure 5: The structure of Butterfly BF(3)

random pair of source and destination nodes. With a probability of 1
2 the node will be

in the other side of the tree.

4.4 Butterfly
Let d ∈ N. The d-dimensional butterfly BF (d) is a graph with node set V = [d + 1]×
[2]d and an edge set E = E1

⋃
E2 with

E1 = {{(i, α), (i + 1, α)}|i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i + 1, β)}|i ∈ [d], α, β ∈ [2]d}

A node set {(i, α)|α ∈ [2]d} is said to form level i of the butterfly. The d-dimensional
wrap around butterfly W-BF(d) is defined by taking the BF(d) and identifying level d
with level 0.

Figure 5 shows the 3-dimensional butterfly BF (3). The BF (d) has (d + 1)2d

nodes, 2d · 2d edges and degree 4. It is not difficult to check that combining the node
sets (i, α)|i ∈ [d] into a single node results in the hypercube.

4.5 Base b Hyper Cube
In a base-b hyper cube: V = {a1..an|ai ∈ {0..b− 1}}. In a binary hyper cube, each
node is represented by 0’s and 1’s. For each 1 ≤ i ≤ k and for each j 6= ai exists an

10

arc {a1..ai−1, aj , ai+1, .., ak}. The degree is k(b − 1). If the degree is lgb k and the
diameter is k, as b = n

1
2 then k is constant. Another solution is to fix ai to ai ± 1modb

- then the degree is 2k and the delimeter is b
2 . For b =

√
n we get a grid.

4.6 Base b Cube Connected Cycle
Let d ∈ N. The cube-connected-cycles network CCC(d) is a graph with node set
V = {(a, p)|a ∈ [2]d, p ∈ [d]} and edge set

E = {{(a, p), (a, (p + 1) mod d)}|a ∈ [2]d, p ∈ [d]}⋃
{{(a, p), (b, p)}|a, b ∈ [2]d, p ∈ [d], a = b except for ap}

In a base-b cube connected cycle the number of nodes is bkk
The degree is constant (3 in the binary case) with a diameter of 2.5k. |V | = bkk

and lg n = A + lg k

4.7 Shuffle Exchange
Let d ∈ N. The d-dimensional shuffle-exchange SE(d) is defined as an undirected
graph with node set V = [2]d and an edge set E = E1

⋃
E2 with

E1 = {{(ad−1...a0), (ad−1...a0)}|(ad−1...a0) ∈ [2]d, a0 = 1− a0}

and

E2 = {{(ad−1...a0), (a0ad−1...a1)}|(ad−1...a0) ∈ [2]d}

4.8 DeBruijn
The b-ary DeBruijn graph dimention d DB(b,d) is a undirected graph G=(V,E) with
node set V={v ∈ [b]d} and edge set E that contains all edges {v, w} with the property
that w ∈ {(x, vd−1, ..., v1) : x ∈ [b]}, where v = (vd−1, ..., v0).

4.9 Building a Dynamic Graph
We’ll set an id for each node, and the size of its id describes its ”world”. For example -
a node with an id of size k thinks that he’s inside a k-nodes cube. We’d like to connect
the arcs between the nodes. Properties:

1. No node’s id is a prefix of any other node’s id

2. The ids of the nodes are being used as prefix codes

What happens when the tree is not complete ? - A node will connect to a node in
a higher level (where a node is missing). To be more precise, we’ll review the case of
Dynamic Graphs as stated in [AAA+03], which offers an algorithm for maintaining a
dynamic overlay network that derives its characteristics from a family of static graphs.

11

Figure 6: The structure of Cube Connected Cycles CCC(3)

12

Figure 7: The structure of Shuffle Exchange SE(3) and SE(4)

13

Figure 8: The structure of DeBruijn DB(2,2) and DB(2,3)

14

Figure 9: An example of merge and split on dynamic hypercube: view of the dynamic
graph as a tree (above) and the graph itself (bottom)

15

Our goal is to make use of family of graphs in order to maintain a dynamic graph that
nodes can join and leave. Intuitively, this works by having each node join some location
at Gi by splitting it into a set of children at Gi+1, and vice versa for leaving.

The nodes of the dynamic overlay graph can be thought of as the leaves of a tree.
The inner vertexes represent nodes that no longer exist (were split), and the leaves
represent current nodes. In order to maintain the tree, when a node joins the network,
it chooses some location to join and ”splits” it into leaves. On the other hand, when a
node leaves the network, it finds a full set of siblings, and merges the remaining subset
into a single parent. The algorithms are presented in the article.

In Figure 9 we show a merge and a split operation on a dynamic hypercube. It’s
easy to see that split and merge operations keep the dynamic graph properties.

In the article, you’ll also find 3 techniques to balance the graph: one deterministic
and one randomized, and the last is a combination of the first two techniques.

References
[AAA+03] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal, Dahlia Malkhi,

and Elan Pavlov. A generic scheme for building overlay networks in adver-
sarial scenarios. In Proceedings of the 17th International Symposium on
Parallel and Distributed Processing, page 40.2. IEEE Computer Society,
2003.

[DBK+01] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert
Morris, Ion Stoica, and Hari Balakrishnan. Building peer-to-peer systems
with chord, a distributed lookup service. In Proceedings of the 8th Work-
shop on Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau,
Germany, May 2001. IEEE Computer Society.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218:329–??, 2001.

16

