
Network Layer: Routing in the Internet

http://www.cs.huji.ac.il/~com1 com1@cs.huji.ac.il

> Some of the slides have been borrowed from: Computer Networking: A Top Down Approach Featuring the Internet, 2nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Intra-AS and Inter-AS routing

We'll examine specific inter-AS and intra-AS
 Internet routing protocols shortly

Network Layer

2

Routing in the Internet

- The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - o Stub AS: small corporation: one connection to other AS's
 - Multihomed AS: large corporation (no transit): multiple connections to other AS's
 - Transit AS: provider, hooking many AS's together
- Two-level routing:
 - Intra-AS: administrator responsible for choice of routing algorithm within network
 - Inter-AS: unique standard for inter-AS routing: BGP

Internet AS Hierarchy

Intra-AS border (exterior gateway) routers

A.a.

A.c.

B.a.

A.c.

B.a.

C.b.

A.c.

A.c.

B.a.

C.b.

A.c.

A.c.

B.a.

C.b.

A.c.

B.a.

C.b.

B.a.

C.b.

C.b.

B.a.

C.b.

C.b.

B.a.

C.b.

Inter-AS interior (gateway) routers

Network Laver

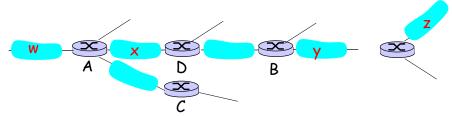
3

Network Layer

Intra-AS Routing

- ☐ Also known as Interior Gateway Protocols (IGP)
- Most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - (IGRP: Interior Gateway Routing Protocol -Cisco proprietary)

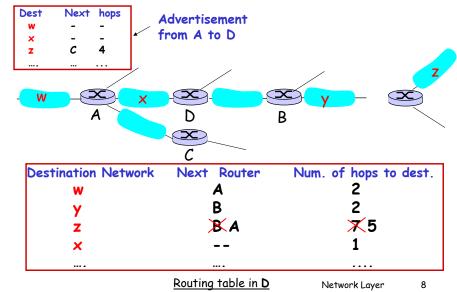
RIP (Routing Information Protocol)


- Distance Vector algorithm
- □ Included in BSD-UNIX Distribution in 1982
- □ Distance metric: # of hops (max = 15 hops)
- □ Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)
- Each advertisement: list of up to 25 destination **nets** within AS

Network Layer

5

Network Layer



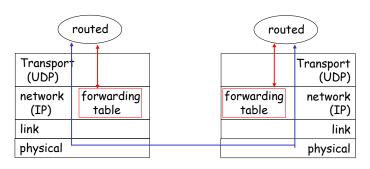
Destination Natwork	Next Pouten	Num. of hops to dest.
W	A	2
v	В	2
Z	В	7
×		1
		••••

Routing table in D

RIP: Example

RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link declared dead


- o routes via that neighbor invalidated
- o new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- o link failure info quickly propagates to entire net
- poisoned reserve used to prevent ping-pong loops (infinite distance = 16 hops)

Network Layer

9

RIP Table processing

- RIP routing tables managed by application-level process called route-d (unix daemon)
- advertisements sent in UDP packets

Network Layer

10

RIP Table example (continued)

netstat -r at router giroflee.eurocom.fr

Destination	Gateway	Flags	Ref	Use	Interface
127.0.0.1	127.0.0.1	UH	0	26492	100
192.168.2.	192.168.2.5	U	2	13	fa0
193.55.114.	193.55.114.6	U	3	58503	le0
192.168.3.	192.168.3.5	υ	2	25	qaa0
224.0.0.0	193.55.114.6	υ	3	0	le0
default	193.55.114.129	UG	0	143454	

- Three attached class C networks (LANs)
- Router only knows routes to attached LANs
- 'Default router' used to go to unlisted destinations
- Router multicast address: 224.0.0.0
- Loopback interface (for debugging)

OSPF (Open Shortest Path First)

- RIP not sufficient for large nets, inherited from ARPANET
- □ In 1979 IETF started replacing RIP with a link state gateway routing protocol
- □ In 1988 IETF started the design of a successor called OSPF which became a standard in 1990
- OSPF was designed to deal with a variety of issues:
 - Routing based on type of service
 - Enable variable distance metrics
 - Load balancing
 - Security
 - Scalability

Network Laver

11

OSPF

- "open": publicly available
- Uses Link State algorithm
 - LS packet dissemination (diffusion)
 - Topology map at each node
 - Route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)
 - Carried in OSPF messages directly over IP (rather than TCP or UDP

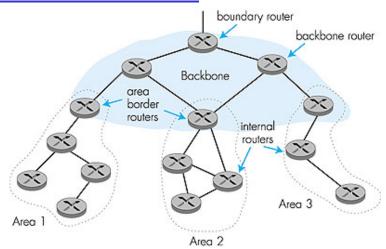
Network Layer

13

OSPF

The five types of OSPF messages:

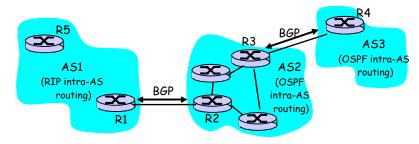
Message type	Description	
Hello	Used to discover who the neighbors are	
Link state update	Provides the sender's costs to its neighbors	
Link state ack	Acknowledges link state update	
Database description	Announces which updates the sender has	
Link state request	Requests information from the partner	


Network Layer

14

OSPF "advanced" features (not in RIP)

- Security: all OSPF messages authenticated (to prevent malicious intrusion)
- Multiple same-cost paths allowed (only one path in RIP); can use next-shortest path first for load balancing
- For each link, multiple cost metrics (e.g., satellite link cost set to "low" for best effort; high for real time)
- □ Integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- □ Hierarchical OSPF in large domains.


Hierarchical OSPF

Hierarchical OSPF

- □ Two-level hierarchy: local area, backbone.
 - O Link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- □ Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- Backbone routers: run OSPF routing limited to backbone.
- □ Boundary routers: connect to other AS's.

Inter-AS routing in the Internet: BGP

Network Layer

18

Network Layer 17

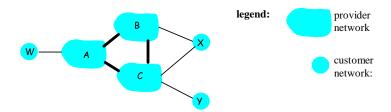
<u>Internet inter-AS routing: BGP</u>

- BGP (Border Gateway Protocol): *the* de facto standard
- □ Path Vector protocol:
 - o similar to Distance Vector protocol
 - each Border Gateway broadcast to neighbors (peers) entire path (i.e., sequence of AS's) to destination
 - BGP routes to networks (ASs), not individual hosts
 - E.g., Gateway X may send its path to dest. Z:

Path
$$(X,Z) = X,Y1,Y2,Y3,...,Z$$

<u>Internet inter-AS routing: BGP</u>

Suppose: gateway X sends its path to peer gateway W

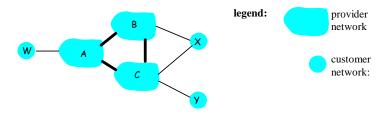

- - cost, policy (don't route via competitors AS), loop prevention reasons.

Path
$$(W,Z) = w$$
, Path (X,Z)

- Note: X can control incoming traffic by controlling its route advertisements to peers:
 - e.g., don't want to route traffic to Z? => don't advertise any routes to Z!

19

BGP: controlling who routes to you



- □ A,B,C are provider networks
- \square x,w,y are customers (of the provider networks)
- □ x is dual-homed: attached to two networks
 - \circ x does not want to route from B (via x) to C
 - o.. so x will not advertise to B a route to C

Network Layer

21

BGP: controlling who routes to you

- □ A advertises to B the path Aw
- B advertises to x the path BAw
- □ Should B advertise to C the path BAw?
 - No way! B gets no "revenue" for routing CBAw since neither w nor C are B's customers
 - O B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Network Layer

22

BGP operation

Q: What does a BGP router do?

- Receiving and filtering route advertisements from directly attached neighbors
- □ Route selection
 - To route to destination X, which path will be taken? (of several advertised)
- Sending route advertisements to neighbors

BGP messages

- □ BGP messages exchanged using TCP.
- □ BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg;
 also used to close connection

Network Laver 23 Network Laver 24

Why different Intra- and Inter-AS routing?

Policy:

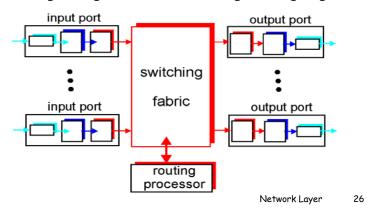
- Inter-AS: admin wants control over how its traffic is routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed
- Examples of policy decisions: traffic starting or ending at IBM should not pass through Microsoft; Never put Iraq on a route starting at the Pentagon; Only use Bangladesh if no other route

Scale:

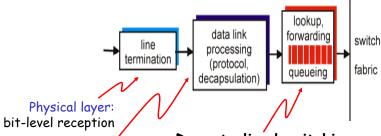
hierarchical routing saves table size, reduced update traffic

Performance:

- □ Intra-AS: can focus on performance
- □ Inter-AS: policy may dominate over performance


Network Layer

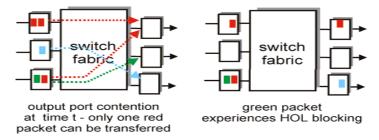
25


Router Architecture Overview

Two key router functions:

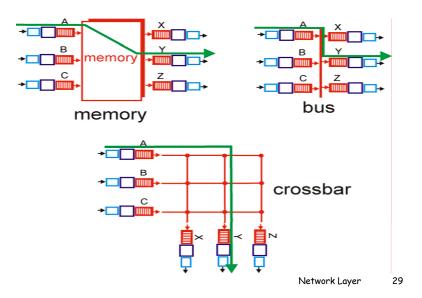
- run routing algorithms/protocol (RIP, OSPF, BGP, etc..)
- switching datagrams from incoming to outgoing link

Input Port Functions


Data link layer: e.g., Ethernet

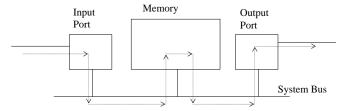
Decentralized switching:

- given datagram dest., lookup output port using routing table in input port memory
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric


Causes of Input Port Queuing

- ☐ If fabric slower than input ports combined => queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

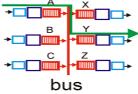
Network Laver


Three types of switching fabrics

Switching Via Memory

First generation routers:

- □ packet copied by system's (single) CPU
- □ speed limited by memory bandwidth (2 bus crossings per datagram)

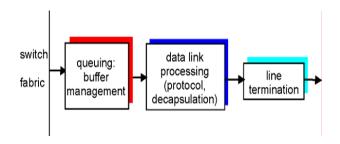

Modern routers:

- □ input port processor performs lookup, copy into memory
- □ Cisco Catalyst 8500

Network Layer

30

Switching Via a Bus

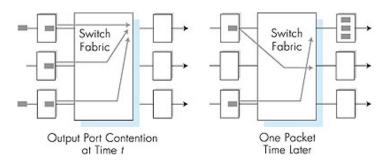

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- □ 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- □ initially developed to connect processors in multiprocessor systems
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- □ Cisco 12000: switches Gbps through the interconnection network

Network Layer 31 Network Layer 32

Output Ports



- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

Network Layer

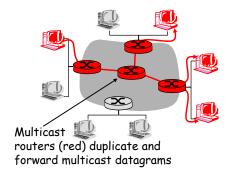
33

Causes of Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Network Layer

34

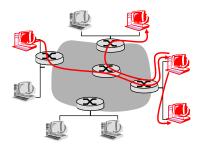

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
 - o analogy: one teacher to many students
- Question: how to achieve multicast

Multicast via unicast source sends N unicast datagrams, one addressed to each of N receivers multicast receiver (red) not a multicast receiver (red) Network Layer 35

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
 - o analogy: one teacher to many students
- Question: how to achieve multicast

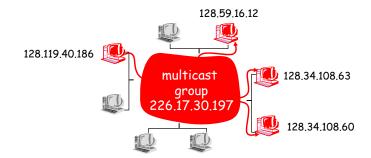


Network multicast

 Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
 - o analogy: one teacher to many students
- Question: how to achieve multicast


Application-layer multicast

 end systems involved in multicast copy and forward unicast datagrams among themselves

Network Layer

37

Internet Multicast Service Model

multicast group concept: use of indirection

- o hosts addresses IP datagram to multicast group
- routers forward multicast datagrams to hosts that have "joined" that multicast group

Network Layer

38