
Algorithms - Solution 10

1. To find the root ofc we perform a binary search. We compute
(

c
2

)2
, if it is greater thanc we

continue to search in the first half, if it is smaller thanc we continue to search in the second
half. At each iteration we need to find the mid-point of the interval we are currently checking
and to square it. Both operations can be done in time polynomial in O(log c). The number
of iteration isO(log c).

2. (a) (0, 4, 3)

(b) n1 = 3, n2 = 5, n3 = 8, n = 120.

a1 = 2, a2 = 4, a3 = 0.

m1 = 40, m2 = 24, m3 = 15.

m−1
1 (mod n1) = 1, m−1

2 (mod n2) = 4, m−1
3 (mod n3) = 7.

c1 = 40, c2 = 96, c3 = 105.

a = (2 · 40 + 4 · 96 + 0) mod 120 = 104.

3. Recall thated = 1 (mod φ(n)). Alsoφ(n) = (p−1)(q−1) andn = pq. Sincee = 3, and
d < φ(n), we know thated = φ(n) + 1 or ed = 2φ(n) + 1. Let us assume it is the first case
(we do the same for the second case). Then we have the following equations in the variables
p, q: pq = n anded = pq− p− q + 1 = n− p− q + 1. So we havep = n− ed− q + 1. We
substitute this in the first equation, and get a quadratic equation in the variableq. We solve
it, if one of its solutions is a factor ofn then we are done, if not we do the same for the case
ed = 2φ(n) + 1. One of the two sets of equations must have the factorq as its solution.

4. Suppose thatA is a procedure that can decrypt1/100 of the messages that Alice encrypts.
We show a procedure that decrypts every message with high probability: Let c(M1) be an
encrypted message and we want to computeM1. We choose randomly a messageM2 and
computegcd(M2, n) (recall thatn is public). If it is not 1, then we have succeeded to
factor n and we can decrypt every message. Otherwise look at the message M = M1M2.
sinceM2 is chosen uniformly from all the messages that havegcd(M2, n) = 1, and since
gcd(M1, n) = 1, M is uniformly distributed over all the elements of the multiplicative group
Z∗

n which is the space of all messages. Therefore with probability 1/100 A can decrypt
c(M). We now use the fact thatc(M) = c(M1)c(M2). we computec(M2) and multiply it
by c(M1) we now havec(M). we now givec(M) to A. SupposeA computesM for us, so

1

we divide it byM2 and retrieveM1. We have shown that with probability1/100 we have
succeeded to decrypt every message. If we repeat it many times (say, 1000) we succeed with
very high probability.

5. (a) We have seen that computing GCD takes time which is polynomial in the length of the
binary representation of the numbers. The same is true for squaring and computing
remainders. Finally, by our assumptionA runs in polynomial-time.

(b) We want to show that given an integery, the algorithm distinguishes between the case
that y is prime and the case thaty has at least two distinct prime factors both strictly
larger than 2.

Case 1: y is a prime. In this casegcd(z, y) = 1, and sinceZy is a field, there are two
roots toz2 mod y: z and−z (which is the integery− z). A will return one of the two
and we will declare correctly thaty is a prime number (with probability 1).

Case 2: y has two distinct prime factors. If gcd(z, y) 6= 1 then we have found a
factor ofy and we can declare that it is not a prime. Otherwise, using thesame analysis
that we did for Rabin’s encryption scheme, we have thatz2 mod y has at least four
different square roots (mod y). Let R be the set of roots returned byA, and−R be
the set of their negatives (i.e. ifz ∈ R, y − z ∈ −R). By our argument,R ∪ −R
includes at most1/2 of the elements inZ∗

y (which is the set from whichz comes,
becausegcd(z, y) = 1). Whenever we choosez 6∈ R∪−R, we will get back fromA a
number that is notz or y − z and we will correctly declare thaty is not a prime. This
happens with probability at least1/2.

(c) We repeat the above algorithmlog 1/δ times, where each timez is chosen indepen-
dently. If the above algorithm always answers “prime” we will say thaty is prime. If in
at least one iteration we get “not a prime” we will declare that y is not a prime. By the
analysis above, ify is prime we will always say the correct answer. Otherwise, ineach
iteration we have a probability at most 1/2 to give the wrong answer (i.e. say thaty is
a prime). So the probability to give the wrong answers in all the iterations is at most
(1/2)log 1/δ = δ.

2

