Algorithms - Solution 10

1. To find the root ot we perform a binary search. We compt@@)Z, if it is greater tharc we
continue to search in the first half, if it is smaller thawe continue to search in the second
half. At each iteration we need to find the mid-point of themal we are currently checking
and to square it. Both operations can be done in time polyaloimiO (log ¢). The number
of iteration isO(log c).

2. (a)(0,4,3)
(b) ny =3,n0 =5,n3 =8, n=120.
a1 =2,a9 =4,a3 =0.
mq = 40, mo = 24, mg = 15.
my( mod ny) =1, my( mod n2) =4, mz*( mod n3) = 7.
c1 = 40, co = 96, c3 = 105.
a=(2-40+4-96+0) mod 120 = 104.

3. Recallthatd = 1 ( mod ¢(n)). Alsogp(n) = (p—1)(¢—1) andn = pg. Sincee = 3, and
d < ¢(n), we know thated = ¢(n) + 1 ored = 2¢(n) + 1. Let us assume it is the first case
(we do the same for the second case). Then we have the fofjaygnations in the variables
p,q:pg=nanded =pg—p—q+1l=n—p—q+1. Sowehavey =n—ed — ¢+ 1. We
substitute this in the first equation, and get a quadrati@égu in the variable;. We solve
it, if one of its solutions is a factor of then we are done, if not we do the same for the case
ed = 2¢(n) + 1. One of the two sets of equations must have the fagtay its solution.

4. Suppose thafl is a procedure that can decrypt100 of the messages that Alice encrypts.
We show a procedure that decrypts every message with hidgrapildy: Letc(M;) be an
encrypted message and we want to compute We choose randomly a messatge and
computeged(Ms, n) (recall thatn is public). If it is not 1, then we have succeeded to
factorn and we can decrypt every message. Otherwise look at the geessa= M7 Ms.
since M- is chosen uniformly from all the messages that heué&( M5, n) = 1, and since
ged(My,n) = 1, M is uniformly distributed over all the elements of the multiptive group
Z* which is the space of all messages. Therefore with prolhili100 A can decrypt
c(M). We now use the fact that M) = ¢(M;)c(Ms). we compute(Ms) and multiply it
by ¢(M;) we now have:(M). we now givec(M) to A. Supposed computesM for us, so



we divide it by M, and retrieveM;. We have shown that with probability/100 we have
succeeded to decrypt every message. If we repeat it mang (sag, 1000) we succeed with
very high probability.

5. (a) We have seen that computing GCD takes time which isypatyal in the length of the

(b)

()

binary representation of the numbers. The same is true f@arsty and computing
remainders. Finally, by our assumptighruns in polynomial-time.

We want to show that given an integgrthe algorithm distinguishes between the case
thaty is prime and the case thathas at least two distinct prime factors both strictly
larger than 2.

Case 1. y isaprime. In this caseycd(z,y) = 1, and sinceZ, is a field, there are two
roots toz? mod y: z and—z (which is the integey — ). A will return one of the two
and we will declare correctly thatis a prime number (with probability 1).

Case 2: y has two distinct prime factors. If ged(z,y) # 1 then we have found a
factor ofy and we can declare that it is not a prime. Otherwise, usingdhee analysis
that we did for Rabin’s encryption scheme, we have t#fatmod y has at least four
different square roots (mod y). Let R be the set of roots returned by, and—R be
the set of their negatives (i.e. f € R, y — 2z € —R). By our argumentR U — R
includes at most /2 of the elements inZ; (which is the set from which: comes,
becausegcd(z,y) = 1). Whenever we choose¢ R U —R, we will get back fromA a
number that is not or y — z and we will correctly declare thatis not a prime. This
happens with probability at leasy2.

We repeat the above algorithimg 1/0 times, where each time is chosen indepen-
dently. If the above algorithm always answers “prime” wel saly thaty is prime. If in
at least one iteration we get “not a prime” we will declaretth& not a prime. By the
analysis above, if is prime we will always say the correct answer. Otherwisegoh
iteration we have a probability at most 1/2 to give the wrongveer (i.e. say thaj is
a prime). So the probability to give the wrong answers infadl iterations is at most
(1/2)10g 1/6 — 5.



