Algorithms - Ex6 solution

MAX-CUT

1) Define random variables $X_1, ... X_{|E|}$ as follows:

for each $i \in E$:

 $X_i = 1$ if i is an edge between A and B.

 $X_i = 0$ if i is an edge whose two vertices are in the same set.

The expectation of each X_i is:

$$(X_i) = 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2}$$

The size of a cut is therefore defined: $q(O) = \sum_{i \in E} x_i$, where x_i is the value of X_i .

$$[q(O)] = (\sum_{i \in E} x_i) = \sum_{i \in E} (X_i) = \sum_{E} \frac{1}{2} = \frac{|E|}{2}$$

where the second equation is due to the expectation's linearity.

2) 2-approximation algorithm for MAX-CUT:

In order to remove the randomness we replace the exponential sample space with a polynomial sample space.

As proven in class – it is possible to create a k-wise independent sample space of $\{0,1\}^n$ of size $O(n^k)$ in a polynomial time. In our case k=2.

Once we have this sample space, we search it until we find a cut of size $\frac{|E|}{2}$. The sample space is of polynomial size, which means the search will take a polynomial time, and we are assured to find such a cut, as the expectation is $\frac{|E|}{2}$, as proven in section a. $q(Opt) \le |E|$ and therefore this is a 2-approximation solution.

3) A greedy 2-approximation algorithm for MAX_CUT:

i.**Initialization:** Order the vertices arbitrarily and insert v_1 into A.

ii. **Greedy step:** For each vertex in the list insert it to the set which will add more edges to the cut: If v_i has more edges with vertices in A than with vertices in B- add it to B and vice versa.

Claim: This algorithm is 2-approximation.

Proof:

Let q_i be the number of edges added to the cut in step i of the algorithm and let q'_i be the number of edges we "lost" in step i, i.e., the number of edges that stayed in the same set in that step.

As the algorithm is greedy, $\forall i \ q_i \ge q'_i$ and therefore $q(O) = \sum_{i=1}^n q_i \ge \sum_{i=1}^n q'_i$.

Since
$$|E| = \sum_{i=1}^{n} q_i + \sum_{i=1}^{n} q_i'$$
 we get that always $q(O) \ge \frac{|E|}{2}$ and therefore $[q(O)] \ge \frac{|E|}{2}$

Polynomial algorithm for *M*-approximation for MIN-HITTING-SET:

We construct the 0-1 LP problem that is equivalent to the MIN-HITTING-SET problem:

Define for j=1,...,n:

$$x_j = 1 \quad \text{if} \quad j \in H$$
$$x_j = 0 \quad \text{if} \quad j \notin H$$

and thus
$$H = \{j : x_j = 1\}$$
 and $|H| = \sum_{j=1}^n x_j$.

We're looking for a solution that <u>minimizes</u> $\sum_{j=1}^{n} x_{j}$, subject to the following <u>constraints</u>:

- **4**) $x_i \in \{0,1\}$
- 5) For each i we have $j \in S_i$ such that $j \in H$, i.e.: $\sum_{j \in S_i} x_j \ge 1$.

We now <u>relax</u> the problem by changing the first constraint to: $x'_{j} \in [0,1]$.

Assume <u>there's a polynomial solution</u> for the relaxed problem. We <u>round</u> this solution to get back to the integral 0-1 problem:

 $x_j = 1$ if in the solution $x'_j \ge \frac{1}{M}$, $x_j = 0$ otherwise, i.e. $H = \{j : x'_j \ge \frac{1}{M}\}$ where M is the size of the maximal set from S_1, \ldots, S_m .

Note that now we meet the constraints of the integral 0-1 problem since in any S_i there must be at least one such j that $x'_j \ge \frac{1}{M}$ in order to satisfy the second constraint of the relaxed problem.

This algorithm is <u>M-approximation</u>:

$$|H| = \sum_{j \in H} x_{j} \leq_{(1)} i \sum_{j \in H} (M \cdot x_{j}') = M \sum_{j \in H} x_{j}' \leq_{(2)} M \sum_{j=1}^{n} x_{j}' \leq_{(3)} M \sum_{j=1}^{n} x_{j}' copt = M \cdot q(Opt)$$

where (1) is because to $x'_{j} \ge \frac{1}{M}$; (2) is because we sum on all j and (3) is due to the way we rounded the solution.

$$\Rightarrow \frac{|H|}{q(Opt)} \leq M$$