Algorithms — Ex6 solution

MAX-CUT
1) Define random variableX; ;--- X g as follows:

for eachi€ E :
X;=1 if i is an edge betweehandB.
X;=0 if i is an edge whose two vertices are in the same set.

The expectation of eack is:
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The size of a cut is therefore define&:( 0)= z Xi  whereX; is the value ofX; .
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where the second equation is due to the expectation’s linearity.

2) 2-approximation algorithm for MAX-CUT:

In order to remove the randomness we replace the exponential sample space with a
polynomial sample space.

As proven in class — it is possible to creakevese independent sample space{0fL!"

of size O(n*) in a polynomial time. In our cage2.

Once we have this sample space, we search it until we find a cut a‘f@e The

sample space is of polynomial size, which means the search will take a polynomial time,
and we are assured to find such a cut, as the expecta&%& J|s proven in section a.

q(Opt) <|E| and therefore this is a 2-approximation solution.

3) A greedy 2-approximation algorithm for MAX_CUT:

i.Initialization: Order the vertices arbitrarily and inse#t into A.

ii. Greedy step: For each vertex in the list insert it to the set which will add
more edges to the cut: M; has more edges with verticesArthan with
vertices inB— add it toB and vice versa.

Claim: This algorithm is 2-approxiamtion.
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Let §; be the number of edges added to the cut inistéghe algorithm and let
d'; be the number of edges we “lost” in sigpe., the number of edges that
stayed in the same set in that step.

n n
As the algorithm is greedy¥ i 9,=9d'; and thereforeq(O)= Z q, = Z q, .
i i=1
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Since |E|= Z q; + Z q', we get that aIwaysq(O)z|2—| and therefore
i=1 i=1
|E|



Polynomial algorithm for M-approximation for MIN-HITTING-SET:
We construct the 0-1 LP problem that is equivalent to the MIN-HITTING-SET problem:
Define for j=1,...n:

Xj=1 if jEH
Xj=0 if JEH

n
and thusH =(j:x;=1} and[H|= ) X; .
j=1
n
We're looking for a solution thahinimizes Y X; , subject to the followingonstraints
j=1
4) x,€{0,1}
X.>1

5) For eachi we have]€S; suchthatj€eH ,i.e.. ,ZS j
je s

We nowrelaxthe problem by changing the first constraintXb;E[O,l] :

Assumethere’s a polynomial solutiofor the relaxed problem. Weundthis solution to get
back to the integral O-1 problem:

. . , 1 . . . 1 .
X;=1 if in the solutionx jZV’ X;=0 otherwise, i.eH={j:x J‘Zﬁ} whereM is the

size of the maximal set fron®,,-.-, S, .

Note that now we meet the constraints of the integral 0-1 problem since i dngre
. , 1 . . .
must be at least one suctinat x jzﬁ in order to satisfy the second constraint of the

relaxed problem.

This algorithm idvi-approximation
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where (1) is because 0 zﬁ ; (2) is because we sum onjadind (3) is due to the way

we rounded the solution.

= |H| <M
q(Opt)




