Algorithms - Solution 4

1. The solution of the question is purely technical and therefore not interesting. The answer is
18250 multiplications with the optimal input ((A1A2)(A3A4y)).

2. Assume that we have n activities with start and finish times (s;, f;),7 € {1...n} respectively.
First, sort the activities by their start times. Build an array of length n, where for each
start time s; we store act[n;]- number of activities that can be placed before the start time
of n; plus 1 (n; itself) and last[n;]- index of the activity we place before n; or null. Fill
the array recursively with the recurrence equation act[n;| = maz{act[n;]|f; < s;} + 1. After
all the entries are filled, scan an array and find the entry with maximum value- this is the
number of activities that can be selected. In order to get the list of activities- use the values of
last for maximum value, and then last[last] an so on. It is easy to see that we get an optimal
optimal- every optimal solution has the last activity that has been selected, and without this
activity- we solve the sub-problem, where all the activities end before this activity starts.
The run-time is O(n?), since, roughly, for each activity we scan an array once.

3. Define W- the capacity of the thief’s pack, n- number of items, w;- weight of item ¢ and p;-
value of item 7. Build the matrix P[n x W] where each entry [i, j] stores the maximal price
of items 1...7 with the pack capacity j and some sign that says whether we took item ¢ or
not. When we inspect item ¢ with capacity j we can either take it (if it’s price adds to the
optimal price for i — 1 items with the capacity j —wj;) or not. Fill the matrix recursively with
the recurrence equation

0 1=00rj3=0
Pli,jl =4 Pli—1,j] wj > j
max{p; + Pli — 1,7 —w;], P[i — 1,j]} else

and the optimal solution for the whole problem is, of course, at the entry Pln, W] and in
order to get the list of items we just scan the matrix ”backwards” checking the sign of the
item in the solution of sub-problem. Since we examine each entry once and do the constant
number of operations on it, the run-time is O(nW).

4. We have a sequence of n numbers. Build an array where for each number ¢ we store len[i]- the
maximal length of a monotonically increasing subsequence of the first ¢ numbers, necessarily
including item 7 and prev|i]- the previous number in this subsequence or null. Fill the array
recursively with the recurrence equation len[i] = max{len[j]|j < i,n; < n;} + 1. After all the
entries are filled, scan an array and find the entry with maximum value- this is the length
of the monotonically increasing subsequence. In order to get the list of numbers- use the
values of prev for maximum value, and then prev[prev] an so on. It is easy to see that we
get an optimal solution- every optimal solution has the last number that has been selected,
and without this number- we solve the sub-problem. The run-time is O(n?), since, roughly,
for each activity we scan an array once.

D.

6.

We have a tree (regular, not binary) with n nodes and w[i]- weight of each node and assume
that the nodes are stored in array, such that we know for each node it’s parent and children.
For each node we can either take it and it’s grandchildren or it’s children- this is how we
ensure that no two adjacent nodes will be taken. We will fill an array A[n] where at each
entry A[i] we will store the maximal weight of sub-tree rooted at i and some sign that says
whether we took node ¢ or not. We will scan the tree from the leaves upwards and fill the
matrix recursively with the recurrence equation

Ali] = maz{wl[i] + > A[j]|j grandchild of i, Y A[k]|k child of i}, where we add 0 for the
null nodes. It is easy to see that we will get an optimal solution at A[root] and, again, we
can get the list of nodes scanning the nodes signs. The run-time is O(n?).

Note: With more careful analysis we can prove that run-time is actually O(n)
because every node is has only one father and only one grandfather. Everybody
who’s grade was deducted is welcome to appeal!

(a) The exact definition is at Cormen p.302.

(b) The recurrence equation is T(n) = 71 T(k)T(n — k) and T(1) = 1. Assume that
T(n—1) > c*x 2"t Now, T(n) = S0 1 T(K)T(n—k) = X7 2T(k)T(n—1—Fk) +
T(n—1)T1) > S T(R)T(n— k) +T(n—1) > cx2" " +cx2n" 1 =cx2m,

