Algorithms Exercise 3 – Solution

(a) Lemma:

The following are equivalent (note the difference from the lemma that we proved in class):
(1) A set  A of jobs is independent .
(2) For 
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Definitions reminder:

* Independent set - there exists a schedule where no job is late.

* 
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- the number of jobs in A whose deadline is t or earlier.
Proof:
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 By the lemma that we proved in class, for every 
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, in particular, it is true for 
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 Given a set A of jobs where for 
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, we perform the jobs by non-decreasing deadlines. No job is late by this order: Assume that there is a job i with deadline at most 
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 that is in time slot j and is late, i.e. 
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. Further, let i be the first such job. As we ordered the jobs by deadlines, all the jobs in earlier slots have deadlines no later than time 
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, meaning there are j jobs whose deadlines are j-1 or earlier, thus contradicting the assumption for t=j-1. As for jobs with deadlines more than 
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jobs with deadlines at most 
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 and they are scheduled to time slots 
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. We can therefore schedule the rest of the m jobs to time slots  
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, and none of them will be late.
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Now, given a set of jobs A, we use an array R of size 
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 and initialize each cell to 0. Next, we go over the jobs in A and for each deadline 
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, we increment the value of cell number  
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Now, we go over the array, cell by cell and update the cell content to: 
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, i.e. the sum of all the cells to that point: The sum at step 
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, which is the number of jobs of A whose deadline is t or earlier and this is exactly the definition of 
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then by the above lemma, the set A is independent. 
Note that this was done in 
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(b) First, we define a more general problem: We need to optimally schedule a set of jobs, where we can’t use some specified m time slots (it is more general since if m=0 we get our problem). From now on we deal only with the general problem:
Proof:
(1) We prove there exists an optimal solution that includes the first greedy choice. A solution that includes the first greedy choice of this algorithm has job 1 in time slot 
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 or if we can’t use it (remember we’re talking about the more general problem), at the latest of the empty slots before 
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, or if all the slots upto 
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 cannot be used, then at the latest empty slot.
Let 
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 be an optimal solution for the problem assigning a time slot to each job. Let j be the index of the time slot assigned to job 1.

If 
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 but it is not the latest empty slot before 
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 (let's call this slot k), then we can swap job 1 with the job allocated to time slot k. This is because its deadline is not less than  
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 (because it was entered after job 1) and we only move it forward while job 1 is still before its deadline.
Otherwise, if 
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 but it is not the latest possible time slot (again call it k) then again we can swap jobs between time slots j and k. And the same argument shows that we can only improve (job 1 is late anyway, and the other moves forward). 

(2) Assume we have an optimal solution A’ for n-1 jobs  2,…,n which doesn’t use slot 
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. We prove we can add job 1 to it and get an optimal solution A for the whole problem: Assume that adding job 1 to A’ doesn’t give us an optimal solution for the whole problem. Let B be an optimal solution for n jobs where job 1 is at 
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 (we proved in (1) such solution exists). Then 
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. By removing job 1 from solutions A & B we get two solutions such that: w(A’)=w(A) and w(B’)=w(B) (job 1 isn’t late in neither A nor B), and therefore w(B’)<w(A’), contradicting the optimality of A’.

Induction:

Base: n=1. There’s only one solution and therefore it is optimal, and the algorithm also gives it.
Assumption: We have an optimal solution for the problem with n-1 jobs, not using slot 
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Induction step: Directly from (2).
2.
(a)  Hereditary: If 
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      Exchange property: If 
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then there exists 
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(b) Hereditary:  If 
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 for some  

     maximal set
[image: image53.wmf]I

A

Î

. Therefore 
[image: image54.wmf]'

'

I

A

Î

.
    Exchange property:  Suppose 
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. And let A and B be  

    two maximal sets in the original matroids that are contained in the 

    complements of A' and B' respectively. 

    There are a three cases:

     (1) There is an element in 
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that is not contained in A. We can add 

           this element to A' and still have that its component contains A.
     (2) The set B' is contained in 
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 but there is an element c in B that is

           not in 
[image: image59.wmf]A

A

È

'

. In this case we can take any element b in 
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           it to A'. We then look at the set A-b+c. It is in I by the properties of the 

           original matroid, it is maximal, and it is contained by the 

           complement of 
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     (3) The last case is that 
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3. 
(a) We prove that M=(S,I) is a matroid:
I. S is final and isn’t empty as 
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and L is final and non empty by the definition of the graph.
II. Hereditary: Let
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, i.e. there’s a perfect matching between B and a subset B’ of R, and let A be a subset of B:
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 and a perfect matching between A and A’: We choose the vertices in B’ that are matched to the vertices in A in the perfect matching between B and B'.  Clearly there is a perfect matching between A and A'.
III. Exchange property:
Let
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. We’re looking for a vertex 
[image: image74.wmf]A

B

u

-

Î

 such that
[image: image75.wmf]I

u

A

Î

È

}

{

:

Let M be a perfect matching between B and a subset of R, and let M' be a perfect matching between A and a subset of R. Let us look at the graph 
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, and consider its connected components:

1) If a vertex u is part of a circle, its degree is 2 (an edge exiting and an edge entering), which means it belongs to both A & B (in a single perfect matching the degree of every vertex is at most 1).
2) In a simple path of even length (starting and ending on the same side), the number of vertices in A is equals to the number of vertices in B: all the vertices that are not endpoints in the path must belong to both A and B (their degree is 2). As for the endpoints, one must belong to B and the other to A, otherwise it would contradict the perfect matching of A or B.
3) Finally we get to simple paths of odd length. They are the only candidates for connected components that contains more vertices from B than from A. So there must be such a component that has a vertex u at one of the path’s ends such that
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Also, the vertex on the other end cannot belong to A', i.e. the set in R that is matched to A (otherwise the edge entering it would be the second one exiting from one vertex in A, contradicting the perfect matching).
We add vertex u to A and change the matching of the vertices in this component to use only the edges in this component that exited from B. We know such edges exist in the graph and we also know they give perfect matching for the vertices in this component. In other components we keep the matching of A as it was. So we get a perfect matching for all vertices in
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(b)
 We define a weighted bipartite graph G=(L,R,E) where L={women}, R={men}. E = {women’s list}. 
We proved in (a) that the following structure M(S,I) is a matroid:
S=L
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There is a perfect matching between A and a subset of  R}
By using a weight function that assigns the price a woman is willing to pay for a match, this became a weighted matroid, thus giving it as input to the greedy algorithm studied in class will produce an optimal set A, i.e. a set of women that has matches such that the profit is maximized.
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