1.

2.

Algorithms - Solution 1

Pseudo-code for %-merge-sort:

% — Merge — Sort(Arr,p,q)

if (p < ¢) then
% — Merge — Sort(Arr,p,p + LMJ)
2 _ Merge — Sort(Arr,p+ | 252 | +1,q)
Merge(Arr,p,q)

where Merge acts like the one from regular Merge — Sort, except setting the "middle” at L@J instead
of [552].

Run-time analysis:

First, lets prove that T'(n) = O(nlogn), i.e. T(n) < ¢ * nlogn for some ¢ > 0 for all n > ng by
induction. The recurrence equation of the function is T'(n) = T(22) + T(%) + O(n), where O(n) is
the bound on Merge, since it reads every element of the array. The base step is 7'(1) = 1 (easy). The
induction hypothesis is that for each k < n, T'(k) < ¢ x klogk. Now, T'(n) = T(%) + T(%) + O(n) <
12“(%”)+T(§);Lc1 7. '2I'hen,1by induction t}ypothesils T(n) < cx(%)xlog (%”)2+c*(g)*log2(%)+c1 *n <
§cn log(n) + glcn log(5) + senlog(n) + genlog(3) +201 *n = cnlog(n) + 5cnlog(2) —3en log(3)) +
genlog(l) — genlog(3)) + c1 + n = cnlog(n) + scn — cnlog(3) + c1 * n. We will choose ¢ s.t.
—cy xn = 2cn — enlog(3), i.e. ¢; = (log(3) — 2)c. With such choice T'(n) < ¢ * nlogn and we proved
the induction step.

We can prove that T'(n) = Q(nlogn) in a similar way. Thus we get, T'(n) = ©(n logn).

(@) Assume d; = do. We’ll prove that p1 (n) = ©(p2(n)), i.e. lim, g;—% = ¢. We can use L’Hospital
rule to calculate this limit, which says that if both numerator and denominator of the quotient tend
to infinity, the limit of the quotient is equal to the limit of derivative of the numerator divide by the

Qg+ 2

n

derivative of denominator . We will derive d; times and get the limit lim,, R L =
bay +—t—+.+

n n

limy, oo Zdii =

Assume pi1(n) = ©(p2(n)). Assume, by contradiction, that d; # da, w.l.0.9. d; > da. We know, that
each polynomial is © of its highest degree term, i.e. p1 = O(n%) and py = O(n%). But, d; > da,
s0 ndt = w(n). By transitivity, p;(n) = w(pa(n)), reaching the contradiction.

(b) Assume d; < do. We’ll prove that pi(n) = o(p2(n)), i.e. lim, 2;(") = 0. We can use L’Hospital

(n) —

rule to calculate this limit, since both polynomials tends to infinity. We will derive d; times and get

ad;—1 a
L 4+ 20
n%1 £ =90
> .

a‘dl + n

the limit lim = lim,
n—oo bg, nd2=41 +bd1_1n42—d1—1+...+—bdol— n—oo

Assume p;(n) = o(p2(n)). Assume, by contradiction, that d; > ds. We proved in athat di # do,
so we need to check di; > do. We know, that each polynomial is © of its highest degree term, i.e.
p1 = O(n) and py = O(n?2). But, d; > da, 0 n% = w(n). By transitivity, p1(n) = w(pa(n)),
reaching the contradiction.

3. The order of growth is: log?(n), n'/3, log(n!), n'o81087 !,

(a) Using L’Hospital rule:
log2(n . 2*10g(n)*$. 6xlog(n . .
51/(3) = limy, 00 — =375 = limn 00 nl%g) — limy, 00 —75 = limy 00
3

(b) Using the fact that log(n!) = ©(nlog(n)):

1/3
: n _n 1 —
lim,, oo mlog(n) — lim,, oo w2 log(n) — 0

S 1o

18 _

limy, o 18 =0

N

w

(c) Notice that for each n: n! < n™ and for each n > 16: n? < nl°81987_So, for each n > 16 we have:
log(n!) < log(n™) = n * log(n) < n? < nloglosn

(d) Apply log on both sides: log(n'°8°e()) = log(log(n)) * log(n) < log(n) * log(n) = log?(n) <
log(n!) = nloslle(™) < p!

4. G = (V,E)is atree, i.e. connected acyclic graph.

(@) Assume we add an edge (v, u). Before the adding, because a graph is connected, we had a path from
u to v, lets say u, a1, - . ., ag, v, SO NOW we have a path u, a1, - - ., ax, v, u, which is a cycle.

(b) Assume we remove an edge (v,u), and assume by contradiction that the graph remains connected,
i.e. we still have a path from u to v, lets say u,aq,...,ax, v, that means, that before removing we
had a path u, a1, - - -, ax, v, u, Which is a cycle, reaching a contradiction.

(c) We have at least one path between every pair of vertices, because a graph is connected. Assume,
by contradiction, that we have two pathes between (v,u), lets say p1 = u,a1,...,ax,v and py =
u,b1, ..., bn,v, that means that we have a path p = u, a1, -..,ag,v, by, .., b1, u, which is a cycle,
reaching a contradiction.

5. The answer is log*(logn) = w(log(log*n)). This is because by definition log* »n counts the number
of times we have to concatenate the log function with itself until we get a number smaller than 1. So
you can think of log*(logn) as if we already applied log once and then we start counting. So log*n =
log*(logn) + 1. Or in other words log* n = ©(log*(logn)). So now replace log* n with the variable m.
So we have on the one hand log*(logn) = ©(m) and on the other hand (log(log® n)) = logm. And then

log*(logn) = w(log(log* n)).

