Algorithms - Exercise 8

Due Wednesday 29/12 24:00

1. Prove that $det(V(x_0, ..., x_{n-1})) = \prod_{0 \le j < k \le n-1} (x_k - x_j)$

Where det is the determinant function and $V(x_0, \ldots, x_{n-1})$ is the Vandermonde matrix defined by $V(x_0, \ldots, x_{n-1})_{ij} = x_i^j$ $(0 \le i, j \le n-1)$.

Hint: for every $j, 0 \le j \le n-2$ multiply the j-th column by x_{n-1} and subtract it from j+1-th column. Argue that the matrix obtained has the same determinant as $V(x_0, \ldots, x_{n-1})$ and use induction.

- 2. (a) Let p(x) be a polynomial with degree bound n, and let $x_0 \in \mathbb{R}$. Define q(x) to be the polynomial of degree bounded by n-1 obtained by dividing p(x) by the polynomial $x-x_0$. Namely, $p(x)=q(x)(x-x_0)$. Show how to compute in time O(n) the coefficients of the polynomial q given x_0 and the coefficients of the polynomial p.
 - (b) Show how to compute in time $O(n^2)$ a polynomial of degree bounded by n in coefficient representation from its point-value representation. that is, you are given $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ (where x_0, \ldots, x_{n-1} are distinct), and you have to compute the coefficients a_0, \ldots, a_{n-1} of the unique polynomial p(x) of degree less than n such that $p(x_i) = y_i$ for every $0 \le i \le n-1$.

Hint: Use the interpolation polynomial as given by Lagrange's formula

$$p(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

First compute $\prod_{j=0}^{n-1}(x-x_j)$, and then divide by $x-x_k$ according to the formula.

- 3. Give the coefficient representation for the following polynomials given in point-value form:
 - (a) (1,1), (-1,-1), (0,-1)
 - (b) (1,0), (i,1), (-1,0), (-i,-1)
- 4. An *n*-th root of unity z is called a *primitive* root of unity if for every n-th root of unity a one has $a = z^k$ for some integer k.
 - (a) Write down all the 8-th roots of unity and all the primitive 8-th roots of unity.

1

- (b) How many primitive n-th roots of unity are there if n is a prime number?
- 5. (a) Prove that $\sum_{k=0}^{n-1} \omega_n^{kj} \omega_n^{-kl} = n \delta_{jl}$
 - (b) Show that $\frac{1}{n}V(\omega_n^0,\omega_n^{-1},\ldots,\omega_n^{-(n-1)})$ is the inverse of $V(\omega_n^0,\omega_n^1,\ldots,\omega_n^{n-1})$